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Categorization According to the Used Sensing Units

)

re human movement,

v utilize a camera or video to captu
such as Kinect

v’ easily influenced by ambient occlusion, background
noise, and illumination variations

v’ privacy issues, fixed place R
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place or embed sensors in the household objects

infer the on-going activities based on the interaction between
an individual and the surroundings
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v' recognize human activities according to the wearable sensor
data collected by someone performing an activity

suitable for both indoor and outdoor scenarios

AN

less invasive to users




Wearable Sensors for Activity Recognition
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Activity Recognition Chain (ARC)
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O consist of the (offline) training stage and (online)

prediction stage
O key components: segmentation, extracting features,

feature reduction, choice of classifiers
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Extracting Features

O Time domain
v mean, std, maximum, minimum
v' autoregression coefficients *
v' signal magnitude area, energy sl R

v' correlation coefficient between two signals
v

O Frequency domain (using FFT, VMD)

v' skewness, kurtosis, the frequency component with largest
magnitude

v

O Time-frequency domain
v wavelet transformation
O Structural features
v" try to find interrelation or correlation between the signals

v" this means that the signal can fit a previously defined :
mathematical function to the current state of the variables



Dimensionality Reduction \/ ’L\NJ\/

O Fea'rur'e extraction 5

points fitting

v' project the high-dimensional data into a reduc d space

v' unsupervised methods (e.g., principle component
analysis (PCA), t-distributed stochastic neighbor
embedding (t-SNE)), supervised methods (e.g., linear
discriminant analysis (LDA))

Al | A2 A3 A4 | C Bl | B2 C

Bl = f(Al, A2, A3, A4)

-- B2 = g(Al, A2, A3, A4)

v' seek to find the minimally sized subset of features
without significantly degrading the classification
accuracy and changing the class distribution

O Feature selection
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Deep Learning

O have the end-to-end learning capability to automatically
learn high-level features from raw signals

O joint optimization of features and classifiers
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Wang, Aiguo, et al. "Activities of Daily Living Recognition with Binary Environment Sensors
Using Deep Learning: A Comparative Study." IEEE Sensors Journal (2020).
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v'behavior computable?
v'no standard evaluation

Modelling metrics or systems as the
and context of human behavior
Evaluation I HES
v'what performance should be
v'data fragmentation considered (e.g., accuracy,
v'data heterogeneity time-efficiency, energy
v'data representativeness efficiency, robustness)
v'data sparsity V..
v'imbalanced data distribution
v'spatial-temporal correlation [RuTPRRZNCS
v
Human
Data Behavior

v'capriciousness Itself = —— " rusaniin

v evolution e L L. 1.

v'null class

v'multiple granularity

(action, activity, behavior, -

plan, goal, intention, etc.) - ﬂ

Yu, Zhiwen, et al. "Ten scientific problems in human behavior v HEIF I R NI O

understanding." CCF Transactions on Pervasive Computing and . Different classifigrs N
Interaction 1.1 (2019): 3-9. Fig. Influence of null class




Human Behavior Itself (cont'd)

O Inter-subject and intra-subject variations

v’ subject dependent vs. subject independent
O Interleaved activities

v’ cooking- telephone - cooking
O Concurrent activities

v’ talking & watching TV

o .. Allen's interval algebra
Allen Statements Pictoral Chronological
Relations Inverse Relations Example Sequence
X before Y Y after X XY 1| Xstart < Xend < Ystart < Yend
XequalsY | Y equals X & Xstart = Ystart < Xend = Yend
X meets Y Y met by X CXTT v 1| Xstart < Xend = Ystart < Yend
X overlaps Y | Y overlapped by X [ 1 X Y : | Xstart < Ystart < Xend < Yend
X contains Y | Y during X ' | X I V| Xstart < Ystart < Yend < Xend
X starts Y Y started by X x Iv 1 | Xstart = Ystart < Xend < Yend

X finishes Y | Y finished by X | I Y x Ystart < Xstart < Xend = Yend




Human Behavior Itself (cont'd)

O Confusion between similar activities
v' predefined activities that trigger similar sensor signals,
even they have different semantics
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Comparison of the magnitude of a tri-accelerometer among three different activities.
The accelerometer has sensor readings from three axes, i.e., x-axis, y-axis, and z-axis.
(a) Comparison of walking and standing: (b) Comparison of standing and sitting.
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Hierarchical Human Activity Recognition

O Motivation: for multiple-class classification problem,
how to get the decision boundary?

(A) A Binary classification
°
oq ©
o o
A X, °
°
oq ©
X %A‘% tﬂwo g
) >
X
AA AAA B A 1
. ( ) Binary classification
Xl ! \\‘~\
Xz A\‘\\
A 44 -l
A A A
>

X
O Idea: divide the predefined activities of interest into

multiple sub-groups and further recognize activities




O Insome (simple) cases, we can group the activities of
interest into sub-groups according to the movement state,
time-spatial information, or other knowledge

O e.g., group standing, sitting, lying into static activity, and
group walking, go-upstairs, and go-downstairs into dynamic
activity

O Organize the procedure into a tree-structure

predefined . - dstingushstatic
' ¢ + and dynamic activities '

activites f i

g siting sndng, | 12 S i
walking, downstairs, | ipredefined activities |
upstairs PRI
o - 4 S : Statlc . .dls.nngu;sh ..... dynam‘C - d-::-:‘.ng;mh ..... E
_~ ) “ NG | actxvxtnes ’:d P ok actnvntles ::d 30 ,:f::m
{ standing ” siting H { waﬂ\mg ”upstans downstars
T T standing sitting  lying walking  upstaris downstaris

Flat s’rr'uc’rure : . ]
Tree-based (Hierarchical) structure

Wang, Aiguo, et al. "Towards human activity recognition: a hierarchical feature selection
framework." Sensors 18.11 (2018): 3629.




Knowledge-driven Tree-based Model

v'build a classifier for each non-leaf node

v'for each non-leaf node, its training set comes from its child
nodes

v'a top-down fashion is used to gradually predict its.most 'specific

activity label . | predefined d;;mguz.hstatc '
O One optimal feature subset fits all |

activites ’, ..................
nodes? CP!—E M 1 :

O For complex cases where we nee

handle a large number of activities and.- - — R s
 « distingui ' i  + » distinguis :

expert knowledge is not available, eg ‘,tﬁ;“‘é"‘f,hmg f ' .m::umm,:
. .\ activities e g . activaties / .., ;i 4ounstais |
write on notepad, open hood, close: Lo RN, L -

hood, check gaps on the front, open
left front door, close left front door,
C/OS@ bOth Ieft dOOr', CheCk tr’unk ggpﬁmg sitting ~ lying walking  upstaris downstaris
open and close trunk, and checking
steering wheel
O Not easy fo obtain the hierarchical 18

structure PROBLE M 2

..............




Tree-based Model with Feature Selection

v'optimize the feature space for each non-leaf node (using (existing)
various feature selection algorithms)

v'build a classifier for each non-leaf node
v'for each non-leaf node, its training set comes from its child nodes

label . Model Training e B . E .%M

. * ' optimal feature . 1_?- \
« | subset 5 : : .
" R « % classify nodes 1 ; test sample x
. el I
R Y 1
' 1
X 1
i :
e v optimal eatwe sabset§ 1 - \7 = o (¥ optimal featurs subset 51 |
Lo ' have three feature subsets ! , ’ Ehﬂ"E three feature subsets = ' |
P V(B11, 511, 52) for class " @: (521, 522, Fa3) for class 'y
S - — r:dependent feature selection + ° . , dependent feature 5E[E':t'[m;' E
5 T[N~ i-distinguishnodes1.1,1.2, ¢~ 5/ =\ = distinguish2.1,2.2,and ' !
: %, and13 : SN 23 H
R e T T T T I LY T R, J_vi

DONE! .1 12 13 21 9.9 23 "’ ::ndlill:i




Experiments & Results

O Naive Bayes classifier, Fast Correlation-based Filter (FCBF)
O Feature selection
v class independent: select one common feature subset for all classes

v class dependent: select a feature subset for each class
O UCI-HAR dataset

A comparison on accuracy between hierarchical and non-hierarchical methods

Non-hierarchical model Hierarchical model
Sensor no feature class class no feature class class
selection independent dependent selection independent dependent
oyIoscope 50.80 62.95 61.62 50.87 62.44 64.91
accelerometer §1.07 §85.61 650.49 60.90 85.61 §8.29
gyrodacc /6.99 88.16 §3.61 76.86 88.39 00.36
A comparison on F1 between hierarchical and non-hierarchical methods
Non-hierarchical model Hierarchical model
Sensor no feature class class no feature class class
selection independent dependent selection independent dependent
gyroscope 53.42 64.49 64.79 23.65 63.56 66.34
accelerometer §1.49 85.61 51.63 §1.34 86.04 §8.258
gyrodacc /6.03 68.09 54.66 /77.90 88.72 00.34
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Knowledge-driven Tree-based Model

v'build a classifier for each non-leaf node

v'for each non-leaf node, its training set comes from its child
nodes

v'a top-down fashion is used to gradually predict its.most specific

activity label " predefined| s
O One optimal feature subset fits all activites g
nodes?

O For complex cases where we need to

handle a large number of activities and.———~. L —, A—
. . , :  « distingui ' i s + » distinguis :

expert knowledge is not available, e.g. ':,tﬁ;“‘é“‘f:tmg o B ki
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hood, check gaps on the front, open
left front door, close left front door,
C/OS@ bOth Ieft dOOr', CheCk tr’unk ggﬂ»ﬁmg sitting ~ lying walking  upstaris downstaris
open and close trunk, and checking
steering wheel
O Not easy to obtain the hierarchical 21

structure PROBLE M 2
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of ten manipulative gestures per
the assembly-line worker in a
mdintenance environment

SkodaMiCP contains the sensor si

Skoda Mini Checkpoint

Table 1. List of activity classes to recognize from body-worn sensors.

The user holds
a notepad
with his left
hand and
writes down a
short sentence
with his right
hand.

]
The user
The user re-|checks the
The user|moves the{gaps on the
opens the|stick with his|front door
hood with|right hand|by sliding his
his left hand|while keeping|left and right
and blocks it{the hood with|hand over
with a stick|his left hand|the oaps.
kept with his|then closes the|The two
rigcht hand. hood with his|hands move

left hand.

simultane-
(;Il.\]\'.

The user grabs
the car left
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i‘ IS ('l(:.\'\‘(]
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the car left
front door
with his left
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completely.

T'he user
orabs the car T
L. e user
left front and
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back doors
) : .|lgaps on the
with his lef : | |
: runk W
and richt| .. ;
| | ”" sliding his
ands a
e ; I; left and right
open ar
Il hand over the
close COIm- T
— | gaps. The two
wetely AT R
I hands move si-
at the same

3 multaneously.
time the two

(i(:ul'.\'

F/h

R

The user
opens the
trunk using
both hands
and then
nmoves it up

and down on
the top of his
head three
times before

closing it.

The user erabs
the
wheel
both
and

steering
with
hands

it

and

turns
clockwise

counterclock-
wise three

times.
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Confusion matrix

O Allow visualization of the performance of an algorithm,
typically a supervised learning one

O Each row of the matrix represents the instances in a
predicted class while each column represents the instances
in an actual class (or vice versa)

O Indicate the confusion among activities

{ 3 U

1 2 3 4 5 6 #
Confusion matrix for activities (1, 2, 3,4, 5, 6)



Data-driven Tree-based Model

O Step 1: apply a clustering algorithm to the confusion matrix, and
get a dendrogram that determines the clusters of activities

lving, sitting, standing,
walking, downstairs, upstairs

lving sitting standing walking downstairs upstairs

(a) The dendrogram of the six activities.

O Step 2: clip the dendrogram to get a tree structure

lying, sitting, standing,
walking, downstairs, ups t':u%:

.........

.......

. - . . . . 25
Wang, Aiguo, et al. "HierHAR: Sensor-based Data- lying sitting  standing walking  downstairs  upstairs
driven Hierarchical Human Activity g ;
Recognition." TEEE Sensors Journal (2020). (b) The tree-based model




O What if we make wrong predictions at the first level?

O The misclassification of the top-level classifier jeopardizes the
performance of the second-level classifiers

lving, sitting, standing,

. .
and dynamic
‘activities

static
. activities -

- di!.lin.gui!h- ; -‘ - distinguish
'sunding. sitting walking, upstaris, *
‘and lying 1 and downstairs

...............

lving sitting  standing walking downstairs upstairs
(b) The tree-based model

O In Table I, 1.7% standing instances TABLEI
are CIGSSified as u STGir'S. If an CONFL’SIDIN_J MATRIXL?N UCI-HARIWITH'NIA'['VEBAYI:;S. _
instance of s‘randirF:g is classified as Wm0 0BT T
dynamic activity by the top-level — pomis o0 o013 om0 o o
classifier, the second-level classifier amis. om0 o0 0% 015 oo
can only classify it as walking, L e

upstairs, or downstairs.

O Accumulated errors induced by the prediction

process of the tree-based model PROBLEM 3
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O Problem: restrict the connections of activities to a hierarchy of
disjoint groups
O TIdea: enable connections between any two activities under certain

conditions
O Step 1: obtain the confusion matrix among the activities

O Step 2: for each activity A, find the set of activities S(A)
that are more easily misclassified as activity A

v' define a confusion threshold to obtain the confusing
activities of A

lying, sitting, standing, |+ Jacsify the
walking, downstairs, tpredefined activities
ups tairs PP NP

L

1

downstams ]

i || [ g s

« for each internal node, distinguish iuelffro;n its descendants (if exist)

...................................................
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D Gr‘ap h_ based mOdel DON E l Wang, Aiguo, et al. "HierHAR: Sensor-based Data-driven Hierarchical Human

* Activity Recognition." IEEE Sensors Journal (2020).




Data-driven Graph-based Model

O Training stage
v'first trains a top-level classifier to
distinguish all the predefined
activities
v for each activity A that has non-
empty S(A), we train a second-level

classifier to distinguish between A
and S(A)

O Prediction stage

v’ first classify it using the top-level
classifier

v if the set S(A) of the top-level
prediction A is not empty, use the
second-level classifier associated
with A and S(A) to get the final
prediction; otherwise, report the
top-level result

Iving, _sitting. standing, ., classify the i
walking, downstairs, | spredefined activities |
upstairs TR P P

-

downstams l

|

1 C ‘_ e .
‘sining H lying ”\\alking ”upstairs
1 \ A A
« for each internal node, distinguish itself from its descendants (if exist)

Algorithm 2: Graph-based Activity Recognition Model

Input: a labeled train set D, activity labels L,
a confusion threshold &, a test sample x
Output: the activity label 4 of x

// the training of graph-based activity recognition model
1. calculate the confusion matrix CM on D; // return confusion matrix
2. for each activity 4 of L do
2.1) 5(4)={ }; I/ initialize the set of confusing activities of 4
3. for each activity 4 of L do
3.1) for each activity B of L do
if 4 =B and CM(4, B)>=68do
S(4).add(BY); // B is the confusing activity of 4 and add it to S¢4)
3.2)if not_empty(S5(4)) do
train a classifier ¢/s_A to distinguish between 4 and 5(A);
4. train a classifier ¢/s afl on D to distinguish all activities;

// activity recognition using the graph-based model
5. 4 = cls_all (x); // return the activity label of x using the first-level
classifier
6. if not_empty(S(4)) do
A=cls_A(x); !/ return the label of x using the second-level classifier
7. return 4
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Data Points Mixture

O Apply a clustering algorithm on the data points, the
results provide the confusion information (from the
viewpoint of data distribution)

O Measure the confusion among activities

Definition 1. (Cluster Confusion Index). Given a cluster C Definition 2. (Activity Confusion Index). Given the k clusters
consisting of a subset of samples from D, the class of Cis setas  that are obtained by manual assignment or returned by a
the label Z; (1 =i < |L[) that has the maximum number of data  clustering algorithm, the activity confusion index conf{L; — L)
points in C. The number of samples with label Z; (1 <j<|L|, i#  between L, and L; is defined as the sum of cluster confusion
J) 1s defined as the cluster confusion index between [;and Liand |, 4ex of the k clusters, as given in (2).
1s referred to as conf{L; — L)). k
L= I}}gf{x; I(y,=L,)} (1) conf(L, > L)= Ecanjj(Lj —1L) (2)

v' use a confusion threshold 6 to decide whether L; is a potential
confusing activity of L, 2(L.L) - (“M/l ¥ 20




Clustering-guided Graph-based Model
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Clustering-guided Graph-based Model

. TRAINING STAGE

training Dats partition
 \setD

Activities

of interest L

» | 1) Activity confusion

lindex

P>
1) Data-driven
Inerarciocal model

Test samples

Activity

Recognizer

O lines 1-2 show the steps of

quantifying the confusion among
activities

O lines 3-5 denote the classification
model training that mainly describes
how to build a hierarchical activity
recognizer under the guidance of

the activity relationships

O lines 6-8 show the procedure of how
to obtain the predicted label of a
test sample, which involves two-level
classifications

lying, sitting, standing, | 1) chssify the ~
walking, downstairs, spredefined activities
Gl"aph-bﬂs Odel EEiErs | Lasssas.s.e.d

e Hmﬂfm o

' downstairs ]

| « for each internal node, distinguish itself from its descendants (if exist) l

............................................

Algorithm 1: Clustering Guided Hierarchical Human Activity
Recognition Framework

Input: a labeled train set D, activity labels L,
confusion threshold &, a test sample £x
QOutput: the predicted activity label L, of tx

/ TRAINING STAGE
1. partition D into clusters CLU; // Component #1
2. obtain the activity confusion matrix CM of CLU using (1) and (2);
3. train a classifier ¢ls_all to classify all activities; // Component #2
4. for each activity L, of L do
4.1) S(L4)={ }; /[ initialize the set of confusing activities of L4
5. for each activity L, of L do
5.1) for each activity Ly of L do
calculate 5(Lg, L4) using (3);
if Ly !=Lgand n(Lg, L4) = 0 do
S(L4).add(Lg); // save the confusing activity Lg of L4 to S(L4)
5.2) if not_empty(S(L,)) do
train a classifier cls L, to distinguish between [ ;and S(L.,);

/ PREDICTION STAGE
6. L, =cls _all (tx); // infer the label of tx using the top-level classifier
7. if not_empty(S(L,)) do

Ly =cls_Li(tx); // infer the label of tx using the second-level classifier
8. return L, // return the prediction




Experimental Setup & Results

O UCI-HAR consists of six human activities performed by thirty
volunteers with a smartphone attached to their waist

v' walking, standing going downstairs, going upstairs, sitting,
lying

v' smartphone was embedded with a 3-axis accelerometer and
a 3-axis gyroscope and worked at a 50 Hz sample rate

v The streaming sensor readings were divided into segments
with a 2.56s half-overlap sliding window

O SkodaMicCP contains the sensor signals of ten manipulative gestures
performed by the assembly-line worker in a car maintenance
environment

v' write on notepad (WN), open hood (OH), close hood (CH), check
gaps on the front (CG), open left front door (OL), close left
front door (CL), close both left door (CB), check trunk gaps(CT),
open and close trunk (OCT), checking steering wheel (CSW)

v' collected for about three hours with USB sensors placed on the
right and left lower and upper arm

v' each USB sensor is a 3-axis accelerometer working at a 64 Hz

v" the data were divided into 1s segments with 50% overlap s
between two adjacent windows




v" homogeneous mode: use the same classification model at
the top level and the second level
« homogeneous tree-based model (HoT)
« homogeneous graph-based model (HoG)
v' heterogeneous mode: use different classification models in
the two levels
« heterogeneous tree-based model (HeT)
 heterogeneous graph-based model (HeG)

O Use four classification models that have different metrics
v" ndive Bayes (NB), k nearest neighbor with k = 1 (KNN),
decision tree (DT), support vector machine (SVM)

O Performance metrics
v Precision, recall
v F1, g-mean

2* precision * recall .
= (r —mean =

F1
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precision + recall




Recognition Performance (Confusion matrix-based model)

O Tree-based model has mixed results. Specifically, HeT outperforms HoT on
UCI-HAR, while HoTperforms better than HeT on SkodaMiCP

O Graph-based model, HeG consistently performs better than HoG

O In terms of the tree-based model and flat model, the flat model achieves a
higher recognition rate in some cases. The main reason is that tree-based
model probably induces compounding errors

O Graph-based model obtains consistently better generalization ability

TABLEIII
RECOGNITION PERFORMANCE ON UCI-HAR OF FLAT, TREE-, AND GRAPH-BASED MODELS.
Classifier NB KNN DT SYM
Metrics (%0) Acc Prec Fl Gm Acc Prec F1 Gm Ace Prec Fl Gm Acc Prec Fl Gm
Flat 76.99 41.03 5510 79.63 B7.85 58.54 7255 90.74 8636 5582 69.17 88.14 96.40 8283 82.83 B2.83
HoT  76.86 4086 5495 7954 87.85 5854 7255 90.74 8629 5571 68.97 8794 9644 8297 9036 97.52
AR HeT  95.69 80.00 88.57 97.07 9640 8283 9028 9750 9644 8297 9036 97.52 96.44 8297 9036 97.52
HoG  76.99 41.03 5510 79.63 8534 53.62 68.70 89.21 8388 51.55 5957 78.16 9640 82.83 90.28 97.50
HeG 9511 77.76 87.26 96.79 89.72 62.78 75.78 9198 9542 80.13 B87.67 9596 9640 82.83 90.27 97.50
TABLE IV
RECOGNITION PERFORMANCE ON SKODAMICP OF FLAT, TREE-, AND GRAPH-BASED MODELS.
Classifier NB KNN DT SVM
Metrics (%o) Ace Prec F1 Gm Ace Prec Fl Gm Acce Prec Fl Gm Acc Prec F1  Gm
Flat 73.68 30.66 4690 83.67 78.83 3405 4890 82.16 9291 62.37 7T6.54 9552 25.52 0 - 0
HoT 6294 2391 3857 76.13 7249 2823 4277 7879 9247 6095 7538 9514 12.79 0 - 0
AR HeT  42.72 0 - 0 12.86 0 - 0 35.76 0 - 0 12.79 0 - 0
HoG  73.68 30.66 4690 83.67 79.25 3453 4940 8241 93.08 6293 7696 9562 2552 0 - 0
HeG 8237 39.78 56.84 89.28 82.24 3839 53.10 8389 9323 6346 7735 9571 2552 0 - 0




Confusion Matrix
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Evaluation of Hyperparameter (UCI-HAR)

O The candidate values of 6 include 0.01, 0.02, 0.03, 0.05, and 0.1
O 3% is a reasonable choice and the graph-based model works well in the
majority of cases
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() (d) (a) NB; (b) KNN; (c) DT; (d) SVM.




Evaluation of Hyperparameter (SkodaMiCP)

O The candidate values of 6 include 0.01, 0.02, 0.03, 0.05, and 0.1
O 3% is a reasonable choice and the graph-based model works well in the

majority of cases
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(a) NB: (b) KNN; (c) DT; (d) SVM.



Evaluation of the Combination of Classifiers
O Use NB, KNN, DT, or SVM at the top level and use NB, KNN, DT or SVM at

the second level

O For UCI-HAR, we observe that the use of SVM at the second level generally
outperforms its competitors. For SkodaMiCP, the homogeneous model is
inferior o that of the heterogeneous model that uses SVM at the second

level

PERFORMANCE ON UCI-HAR WITH THE COMBINATION OF DIFFERENT CLASSIFIERS.
Classifier NB-NB NB-KNN NB-DT NB-SVM KNN-NB KNN-KNN KNN-DT KNN-SVM
Metrics (%) Acec Fl1  Acc Fl Acc Fl Acc Fl Acc Fl Acc Fl Acc Fl Acc Fl
HoT/HeT  76.86 5495 87.17 71.45 8548 67.71 95.69 8857 7730 5543 87.85 7255 86.22 68.87 96.40 90.28
HoG/HeG 76.99 55.10 86.87 71.10 8534 67.81 95.11 87.26 8639 70.27 8534 68.70 8595 69.60 89.72 75.78
Classifier DT-NB DT-KNN DT-DT DT-SVM SVM-NB SVM-KNN SVM-DT SVM-SVM
Metrics (%) Acc FlI  Acc Fl Acc Fl Acc Fl Acc Fl Acc Fl Acc Fl Acc Fl
HoT/HeT  77.30 5543 87.85 72.55 86.29 68.97 9644 9036 7730 5543 87.85 7255 86.29 6897 96.44 90.36
HoG/HeG 86.70 68.49 88.60 73.63 83.88 59.57 9542 87.67 92.78 82.62 92.64 8193 9250 8l1.66 96.40 90.28

PERFORMANCE ON SKODAMICP WITH THE COMBINATION OF DIFFERENT CLASSIFIERS.
Classifier NB-NB NB-KNN NB-DT NB-SVM KNN-NB KNN-KNN KNN-DT KNN-SVM
Metries (%)  Ace  FI  Acc Fl Acc F1 Acc F1 Acc F1 Acc Fl Acc F1 Acc Fl
HoT/HeT 62.94 38.57 66.80 38.84 74.82 47.72 42.72 - 67.28 41.09 72.60 42.74 8542 60.80 12.86 -
HoG/HeG  73.68 46.90 85.58 61.08 89.93 69.75 79.97 53.69 7493 4500 7930 49.82 87.01 6098 8224 53.10
Classifier DT-NB DT-KNN DT-DT DT-SVM SVM-NB SVM-KNN SVM-DT SVM-SVM
Metrics (%) Acc  Fl Acc  Fl Acc Fl Acc Fl Acc Fl Acc F1 Acc Fl Acc F1
HoT/HeT 73.92 47.05 82.08 5348 92.53 7549 35.76 - 66.73  41.10 72.62 4292 84.61 59.89 1279 -
HoG/HeG  84.72 60.05 91.55 73.11 92.73 7597 93.23 7735 30.40 - 25.23 - 9243 7531 43.32 -




Recognition Performance (Clustering quided model)
O Use k-means with Euclidean distance

RECOGNITION PERFORMANCE ON THE UCI-HAR DATASET.

Classifier NB NB-NB NB-KNN NB-SVM NB-DT KNN KNN-NB  KNN-KNN KNN-SVM KNN-DT
Accuracy  76.99 76.99 78.86 84.83 77.03 87.85 78.72 87.85 92.26 85.31
Precision  76.88 76.88 78.90 85.13 77.08 87.44 78.63 87.44 92.08 84.80
Recall 79.23 79.23 83.48 88.60 §1.09 87.96 82.86 87.96 93.06 85.98
F1 78.04 78.04 81.12 86.83 79.03 87.70 80.69 87.7 92.57 85.39
Classifier SVM  SVM-NB SVM-KNN SVM-SVM SVM-DT DT DT-NB DT-KNN DT-SVM DT-DT
Accuracy  96.34 82.32 90.43 96.47 §9.79 86.36 77.10 85.88 92.47 86.36
Precision  96.26 82.16 90.01 96.42 89.40 85.99 76.95 85.40 92.38 85.99
Recall 96.52 85.58 90.91 96.65 89.80 86.31 80.78 86.85 93.13 86.31
F1 96.39 83.84 90.46 96.53 89.60 86.15 78.82 86.12 92.75 86.15

(e) SVM (f) SVM-SVM (g) DT (h) DT-SVM



Evaluation of Hyperparameter

O Confusion threshold
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Evaluation of Hyperparameter

O Different distance metrics
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Conclusion and Future Work

QO Conclusion

0 How to better discriminate activities with (triggered) similar

sensor readings

QO Present two different data-driven methods to build
hierarchical human activity recognition model, i.e., confusion

matrix-based method & clustering guided method
0 Tree-based model and graph-based model are presented
0 Conduct extensive comparative experiments
a Future work

0 Human behavior itself driven research work 43
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