
Knowledge-Based Systems 83 (2015) 81–91
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys
Accelerating wrapper-based feature selection with K-nearest-neighbor
http://dx.doi.org/10.1016/j.knosys.2015.03.009
0950-7051/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Hefei Tunxi Road 193, Hefei University of Technology,
Hefei 230009, China. Tel.: +86 180 1995 6086; fax: +86 551 6290 4642.

E-mail addresses: wangaiguo2546@163.com (A. Wang), ning.g.an@acm.org
(N. An), glchen@chzu.edu.cn (G. Chen), llian@hfut.edu.cn (L. Li), gil_alterovitz@
hms.harvard.edu (G. Alterovitz).
Aiguo Wang a, Ning An a,⇑, Guilin Chen b, Lian Li a, Gil Alterovitz c,d,e

a School of Computer and Information, Hefei University of Technology, Hefei, China
b School of Computer and Information Engineering, Chuzhou University, Chuzhou, China
c Center for Biomedical Informatics, Harvard Medical School, Boston, USA
d Children’s Hospital Informatics Program, Boston Children’s Hospital, Harvard Medical School, Boston, USA
e Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, USA

a r t i c l e i n f o
Article history:
Received 12 November 2014
Received in revised form 11 March 2015
Accepted 13 March 2015
Available online 21 March 2015

Keywords:
Gene selection
Microarray data
Wrapper
Filter
k-nearest-neighbor
a b s t r a c t

Wrapper-based feature subset selection (FSS) methods tend to obtain better classification accuracy than
filter methods but are considerably more time-consuming, particularly for applications that have thou-
sands of features, such as microarray data analysis. Accelerating this process without degrading its high
accuracy would be of great value for gene expression analysis. In this study, we explored how to reduce
the time complexity of wrapper-based FSS with an embedded K-Nearest-Neighbor (KNN) classifier.
Instead of considering KNN as a black box, we proposed to construct a classifier distance matrix and
incrementally update the matrix to accelerate the calculation of the relevance criteria in evaluating
the quality of the candidate features. Extensive experiments on eight publicly available microarray data-
sets were first conducted to demonstrate the effectiveness of the wrapper methods with KNN for select-
ing informative features. To demonstrate the performance gain in terms of time cost reduction, we then
conducted experiments on the eight microarray datasets with the embedded KNN classifiers and ana-
lyzed the theoretical time/space complexity. Both the experimental results and theoretical analysis
demonstrated that the proposed approach markedly accelerates the wrapper-based feature selection pro-
cess without degrading the high classification accuracy, and the space complexity analysis indicated that
the additional space overhead is affordable in practice.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The popularization and use of microarray technology in
biomedical research and medicine facilitates the high-throughput
measurement of many gene expression profiles simultaneously
and enables their meaningful application in the diagnosis of can-
cers and tumor subtypes, the discovery of drug targets and the
design of potentially effective drugs at the molecular level [1].
However, the intrinsic nature of microarray data with high dimen-
sionality (as many as thousands of genes) and small sample sizes
(as low as tens of samples) limits their powerful potential in prac-
tical use. In microarray data classification, the ‘‘curse of dimen-
sionality’’ problem can lead to over-fitting, which can degrade
the generalization ability of constructed classifiers in predicting
unseen samples [2,3]. In addition, the feature space that is involved
can have irrelevant and redundant features and often generates a
classifier that has poor performance and weak robustness [4].
The available experimental evidence demonstrates that redundant
features deteriorate the performance of the Naïve Bayes classifier
and that instance-based learners are sensitive to irrelevant fea-
tures [5]. One method to alleviate these problems is to remove
irrelevant and redundant features from the original feature space
using effective feature selection methods [6,7].

Feature subset selection (FSS) for microarray data, which is also
known as gene selection, is defined as the process of removing
irrelevant and redundant features and the identification of a fea-
ture subset that contains the most discriminative information from
the original feature space [8]. In addition to reducing the dimen-
sionality of the original feature space, feature selection offers a
multitude of advantages that are accompanied by a reduced num-
ber of features, such as enhancing the generalization ability of the
classifiers, reducing the training time, improving the performance
of the classifiers, facilitating data visualization and helping biolo-
gists identify the underlying biological mechanisms [9,10].

Based on the framework that has been proposed by Dash and
Liu [11], feature selection mainly consists of two components: a

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2015.03.009&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2015.03.009
mailto:wangaiguo2546@163.com
mailto:ning.g.an@acm.org
mailto:glchen@chzu.edu.cn
mailto:llian@hfut.edu.cn
mailto:gil_alterovitz@hms.harvard.edu
mailto:gil_alterovitz@hms.harvard.edu
http://dx.doi.org/10.1016/j.knosys.2015.03.009
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

82 A. Wang et al. / Knowledge-Based Systems 83 (2015) 81–91
subset generation module and an evaluator module. The feature
subset generation module exploits search strategies to generate
candidate subsets, whereas the evaluator module measures the
goodness of a subset. Depending on whether the evaluator is
involved in the classifier, feature selection methods are typically
classified into three groups: filter, wrapper and embedded [12].
Filter methods have lower computational complexity and better
generalization ability. Because filter methods evaluate the quality
of a feature or a subset of features by using only the intrinsic prop-
erties of the training samples, they are flexible in combination with
a variety of classifiers. In contrast to filter methods, wrapper meth-
ods are specific to a given classifier and evaluate the quality of a
candidate subset, and these methods tend to obtain better classifi-
cation performance than the filter methods [13,14]. Embedded
methods are special cases of wrapper methods that are character-
ized by a deeper interaction between the feature selection and the
construction of the classifier. Feature subsets are generated when
embedded methods are used to construct the classifier. Typical
embedded methods include decision tree C4.5 [15] and SVM-RFE
algorithms [8].

Although wrapper methods achieve better classification
accuracy, a main disadvantage is that they are far more time-
consuming in actual use. For an experiment dataset with N features,
wrapper methods must evaluate O(N2) candidate subsets when
using the sequential forward selection scheme, and even incre-
mental wrapper methods evaluate a sub-quadratic number of can-
didate subsets [16,17]. Such high time complexity would require a
large amount of CPU time in the case of microarray data, which has
thousands of genes [18]. To alleviate this problem and accelerate
the process of feature selection, in this study, we investigated the
wrapper and incremental wrapper methods with the K-Nearest-
Neighbor (KNN) classifier embedded. Rather than considering the
KNN classifier as a black box when evaluating the quality of a can-
didate feature, we constructed and maintained a classifier distance
matrix to speed up the feature subset evaluation process and incre-
mentally updated the matrix after adding a candidate feature into
the selected feature subset. Because incrementally calculating the
distance between any two instances projected over the selected
features avoids a large amount of overlapping distance calcula-
tions, we expect a large reduction in the time cost. This work is a
significant extension of our earlier paper by Wang et al. [19]. In
particular, the main contributions of this paper are as follows:
(1) we propose to accelerate wrapper-based feature selection by
constructing a classifier distance matrix to store the distance
between instances projected over the selected features. This helps
us incrementally update the matrix when a new feature is selected,
avoid constructing a new classifier from scratch, and greatly reduce
massively repetitive calculations; (2) the proposed approach can
apply to three types of feature selection methods, including wrap-
per methods with sequential forward/backward selection, incre-
mental wrapper feature selection methods and incremental
wrapper feature selection with replacement methods; (3) we test
the effectiveness of wrapper-based feature selection method with
KNN classifiers on eight benchmark microarray datasets, and com-
pare it with the state-of-the-art feature selectors; (4) we analyze
the theoretical time complexity of the proposed approach and
experimentally validate its efficiency; (5) we finally analyze the
space complexity of the proposed approach.

The remainder of this paper is organized as follows. Section 2
briefly illustrates the classical KNN algorithm. In Section 3, we
detail the procedure of wrapper-based sequential forward selec-
tion and incremental wrapper-based feature subset selection
methods with the KNN classifier and describe an experiment to
demonstrate their effectiveness for feature selection in comparison
with that of the well-performing feature selector fast correlation-
based filter (FCBF). Section 4 describes the improved wrapper
method and incremental wrapper method in detail. In Section 5,
we first experimentally compare the actual time cost on eight pub-
licly available microarray datasets before and after acceleration,
and this experiment is followed by theoretical time and space com-
plexity analysis. The last section concludes the paper with a brief
summary and discussion.

2. K-nearest-neighbor classifier

In pattern recognition, K-Nearest-Neighbor (KNN) is a non-
parametric learning algorithm that is used for classification and
regression [19–21]. Because it is a typical type of instance-based
or memory-based learning scheme, all of the computation of
KNN is deferred until classification, and no explicit training step
is required for constructing a KNN classifier. Therefore, KNN is a
very simple but efficient algorithm that exhibits a time complexity
of O(1) when training a KNN classifier and of O(mn + mlog2m)
when classifying a new instance over a training set with m
instances and n attributes, where O(mn) is the time complexity
for calculating the distances between the new instance and each
of the training instances. In addition, O(mlog2m) is the time com-
plexity for sorting the distances when finding the k-nearest neigh-
bors of the new instance [22].

In KNN, various distance metrics are used to measure the dis-
tance between two instances according to the type of attribute.
Given two instances x = (x1, . . ., xn) and x0 ¼ ðx01; . . . ; x0nÞ from
experimental samples, the distance dðxj; x0jÞ between two instances
projected on an attribute xj (1 6 j 6 n) is calculated as follows. For
a categorical variable, dðxj; x0jÞ ¼ 0 if x0j ¼¼ xj, and dðxj; x0jÞ ¼ 1 in
other cases; for numerical attributes, the Euclidean and
Manhattan distances are among the most commonly used metrics:

dðxj; x0jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � x0jÞ

2
q

for the Euclidean distance and

dðxj; x0jÞ ¼ jxj � x0jj for the Manhattan distance. In terms of the
Euclidean distance metric, the distance D(x; x0) between x and x0

can be recursively defined as

Dðx; x0Þ2 ¼ Dðx1; . . . ; xn�1; x01; . . . ; x0n�1Þ
2 þ dðxn; x0nÞ

2
: ð1Þ

In the classification, to predict the class label of a new instance,
KNN first finds its k closest neighbors from the training set accord-
ing to the distance metric and then assigns the dominant label
among the k neighbors to the new instance. If k = 1, the label of a
new instance is determined by its closest neighbor. Due to its
implementation simplicity and classification effectiveness, KNN is
commonly used as a standard classifier to evaluate and compare
the performance of different feature selection algorithms [23–25]
and is integrated into the feature selection framework to evaluate
the quality of a candidate feature subset [26–29].

3. Wrapper-based feature selection

3.1. Wrapper-based feature selection with sequential forward selection

Because the wrapper method integrates a classifier into the fea-
ture selection process to evaluate the quality of a feature or a sub-
set of features, it tends to obtain a classifier with high classification
accuracy. Obviously, enumerating all of the possible combinations
of feature subsets and evaluating them one by one is the simplest
approach and guarantees obtaining the globally optimal feature
subset, while the computational complexity grows exponentially
at O(2N) with N number of features. This approach is often unac-
ceptable because it exhibits high time complexity in an actual
application, particularly in the case of gene expression profiles,
which have thousands of genes. To accelerate this process,
researchers have proposed various feature subset search strategies

A. Wang et al. / Knowledge-Based Systems 83 (2015) 81–91 83
to generate candidate feature subsets. Commonly used search
methods include sequential forward selection (SFS), sequential
backward selection (SBS), bidirectional search, sequential floating
search, heuristic search, and random search [30]. Among these
search strategies, SFS achieves a better tradeoff between the com-
putational complexity and the quality of the obtained feature sub-
set. Starting from an empty set, SFS first selects the feature that is
most relevant to the target variable, as evaluated by a classifier and
then searches for the next candidate feature that most contributes
to the enhancement of the classification accuracy among the
remaining features and continues with this process until there is
no improvement in accuracy or there is no candidate feature left.
Through adopting such a deterministic search strategy, the wrap-
per method evaluates only O((S + 1)N) candidate feature subsets
if S features are finally selected and O(N2) feature subsets in the
worst case. Algorithm 1 presents a pseudo-code of the wrapper
method with SFS.

3.2. Incremental wrapper-based feature selection

With the aim of further reducing the time cost and obtaining a
final feature subset within linear time complexity, a hybrid feature
selection method using a combination of filter and wrapper meth-
ods, which was denoted incremental wrapper subset selection
(IWSS), has been proposed [31]. In contrast to the wrapper method
with SFS for selecting the feature that most contributes to the
enhancement of the classification accuracy within each run, IWSS
first employs a filter method to obtain a sequence of ranked fea-
tures according to their relevance to the target variable; starting
from the first feature, IWSS then incrementally adds features from
the sequence of ranked features to the selected subset in a wrapper
manner. By integrating the filter and wrapper methods, IWSS not
only achieves satisfactory results but also significantly reduces
the time complexity to O(N) instead of O(N2) in SFS [31].

Algorithm 1. Wrapper-based Sequential Forward Selection (SFS)
Because the incremental wrapper method adopts the best-first
strategy for feature selection, once a feature is selected, it remains
in the selected subset until the end of the search process, which
limits the search space and could easily lead to a locally optimal
solution because a subset that has the best features may not be
the best subset. To mitigate this problem, Bermejo et al. proposed
the incremental wrapper subset selection with replacement
(IWSSr) method that not only considers the addition of a new fea-
ture but also allows the interchange between the new feature and
one of the previously selected features [32]. Because IWSSr must
evaluate the addition and replacement operations, the time com-
plexity of the wrapper evaluation is O(sN) if s features are selected.
The worst time complexity is O(N2) if all of the N features are
selected. Algorithm 2 presents the pseudo-code of the IWSSr
method, and the IWSS method can be obtained by deleting the
replacement section (lines 6 through 11 in Algorithm 2). In
Algorithm 2, when evaluating a candidate feature Ri, the IWSSr
method addresses Ri by using one of the following three operations:
(1) replacing Sj, which is already selected in the feature subset S,
with Ri, i.e., the operation swap(Sj, Ri) (lines 7 and 10); (2) adding
Ri to the selected subset S, i.e., the operation add(Ri) (line 15); or
(3) discarding Ri (line 17). The best operation (bestOp) is the opera-
tion that contributes the most to the enhancement of the classifica-
tion accuracy and that satisfies the relevance criteria, as will be
discussed in the next subsection. Specifically, in evaluating a candi-
date feature, if a replacement operation contributes more to the
accuracy than an addition operation, the bestOp is the replacement
operation. In contrast, if the addition operation contributes more to
the accuracy than the replacement operation, the bestOp is addition,
whereas if both the replacement and addition operations fail to
enhance the accuracy, the candidate feature being analyzed is dis-
carded. For IWSS, the optional operations are (1) to add the candi-
date feature to the selected subset or (2) to discard the candidate
feature.

3.3. Relevance criteria

In the incremental wrapper subset selection without and with a
replacement methods, i.e., IWSS and IWSSr, respectively, the good-
ness of a candidate feature is assessed by the function evalu-
ate(classifier, Data#Snew[fCg), which trains and validates the
classifier using a fivefold cross-validation over the dataset Data
projected over Snew [{C} (C is the target class) [31]. Rather than
use the average accuracy of the fivefold cross-validation and con-
duct a t-test over the fivefold cross-validation results proposed
previously [31], we adopted the following criteria [33]: (1) a five-
fold cross-validation was employed to decide whether a new fea-
ture is added to the selected feature subset S and (2) the new
feature f is included only if the average accuracy of the fivefold

cross-validation over Data#S[f[fCg is better than that of the fivefold
cross-validation over Data#S[fCg and at least MinFoldersBetter (mf)
of the five-folds works well. MinFoldersBetter (mf) is actually a
counter for recording how many times the five classification
accuracies obtained from the fivefold cross-validation over

Data#S[f[fCg is better than the average accuracy of the fivefold
cross-validation over Data#S[fCg. This approach avoids the criticism
of using a statistical test with a small sample size. For better con-
trol of noise and over-fitting in the feature selection, the recom-
mended empirical values for mf are 2 or 3 [33]. For the wrapper-
based SFS method, the criterion is that the new feature f is included
only if the average accuracy of fivefold cross-validation over

Data#S[f[fCg is better than that of fivefold cross-validation over
Data#S[fCg. In Algorithm 2, the returned items of the function evalu-
ate(classifier, Data#Snew[fCg) include the average classification accu-
racy accnew of the fivefold cross-validation over Data#Snew[fCg, and
the number num indicates how many times the five classification
accuracies obtained from the fivefold cross-validation are better
than the previous average classification accuracy over Data#S[fCg.

3.4. Experimental evaluation

In this section, we evaluate the quality of the selected feature
subset obtained by the above-mentioned methods by comparing
the classification accuracy over eight publicly available microarray
datasets with high dimensionality and a small sample size, as
shown in Table 1; the last column #SFR gives the ratio between
the number of samples and the number of features.

ased Systems 83 (2015) 81–91
Algorithm 2. Incremental Wrapper Subset Selection with
Replacement (IWSSr)
84 A. Wang et al. / Knowledge-B
Colon data: Colon data consists of 62 samples with 2000 genes in
each sample. Of these samples, 40 are diagnosed as tumors, and
the remaining 22 are normal samples. The classification task is to
distinguish between the tumor and normal samples according to
the gene expression profiles [34].

Central Nervous System (CNS) data: The task is to predict the
patient outcomes for central nervous system embryonal tumors.
This dataset contains 60 patient samples with 7129 genes in each
sample, and of these samples, 21 are survivors, and 39 are failures
[35].

Prostate data: This dataset is composed of 50 non-tumor pros-
tate samples and 52 prostate tumors with 12,600 genes [36]. The
task is to identify the expression patterns that correlate with the
distinction of prostate tumors from normal samples.

Leukemia1 data: A collection of leukemia patient samples from
the bone marrow and peripheral blood is used for distinguishing
between acute myeloid leukemia (AML) and acute lymphoma leu-
kemia (ALL) tissues. This dataset contains 72 samples with 7,129
genes: 25 samples of AML and 47 ALL tissues [1]. The classification
task is to distinguish these two types of leukemia according to the
gene expression profiles.

Leukemia2 data: A collection of leukemia patient samples from
bone marrow and peripheral blood for is used for distinguishing
between acute myeloid leukemia (AML) and acute lymphoma leu-
kemia (ALL) tissues. The data for the ALL tissues are further divided
in terms of B cells and T cells. Leukemia2 consists of 72 samples
with 5327 genes, and of these samples, 38 are of AML, nine are
of ALL-B, and 25 are of ALL-T [1]. The task is to build a classification
model to distinguish the three subtypes of leukemia.
Table 1
Experimental dataset description.

Dataset #Features #Samples #Classes #SFR

Colon 2000 62 (40/22) 2 0.031
CNS 7129 60 (39/21) 2 0.008
Prostate 12,600 102 (50/52) 2 0.008
Leukemia1 7129 72 (47/25) 2 0.010
Leukemia2 5327 72 (38/9/25) 3 0.014
DLBCL 7129 77 (58/19) 2 0.011
Ovarian 15,154 253 (91/162) 2 0.017
SRBCT 2308 83 (29/25/11/18) 4 0.036
Diffuse Large-B-Cell Lymphoma (DLBCL) data: Diffuse large B-
cell lymphomas (DLBCL) and follicular lymphomas (FL) are two
B-cell lineage malignancies. There are 7129 genes with 58 DLBCL
samples and 19 FL samples in the DLBCL data. The goal is to build
a classification model to discriminate DLBCL from FL [38].

Ovarian data: The goal of this experiment is to distinguish ovar-
ian cancer from non-cancer using proteomic spectra data. Ovarian
consists of 253 samples, including 162 ovarian cancers and 91 con-
trols, for all 15,154 identities [39].

Small Round Blue Cell Tumor (SRBCT) data: There are four dif-
ferent types of childhood tumors: Ewing’s family of tumors
(EWS), neuroblastoma (NB), non-Hodgkin lymphoma Burkitt’s
lymphoma (BL) and rhabdomyosarcoma (RMS). SRBCT consists of
83 samples with 2308 genes: 29 samples of EWS, 18 samples of
NB, 11 samples of BL and 25 samples of RMS. The classification goal
is to distinguish these four subtypes of tumors based on the gene
expression profiles [37].

For the purpose of this study, KNN was integrated into the
wrapper procedure to evaluate the quality of a candidate feature
subset and was also chosen as the classifier to evaluate the final
obtained feature subset. In our study, we used ReliefF, which is a
distance-based filter measure that has great power in selecting dis-
criminative features and good stability toward the perturbation of
the training set [5,40], to generate a ranked feature set from the
original feature space. For each method, a 10-fold cross-validation
was conducted, and in this process, one fold was used as the test
set to evaluate the final selected feature subset while the remain-
ing nine folds were used as the training set [41]. The training set
was directed to the IWSS and IWSSr methods for feature selection
using the relevance criteria presented in the above section.
Specifically, feature selection was conducted on the training set
to ensure an unbiased feature selection protocol [42], and the clas-
sifier was trained on the training set projected over the selected
feature subset and evaluated on the test data projected over the
selected features. To demonstrate the effectiveness of the KNN
algorithm in wrapper-based feature selection, the commonly used
1-Nearest-Neighbor (1NN) and 3-Nearest-Neighbor (3NN) classi-
fiers were employed to evaluate both the quality of the candidate
subsets and the quality of the final selected feature subset. For the
1NN and 3NN classifiers, we used the Euclidean distance metric to
calculate the distance between any two instances. In addition, the
fast correlation based filter (FCBF) algorithm, a well-performing
state-of-the-art feature subset selector [43,44], was used as a com-
parison with the proposed methods. To measure the quality of the
feature subset selected by FCBF, 1NN and 3NN were also used as
classifiers.

Tables 2 and 3 present the experimental results for the 1NN and
3NN classifiers, respectively, in terms of the average classification
accuracy and the number of selected genes for FCBF, SFS, and
IWSS with the IWSSr methods with mf = {2, 3} as the superscript.
For a comparison, the last two columns present the average accu-
racy over the original feature space and the number of features of
each dataset. The best accuracy achieved by the four methods on
each experimental dataset is shown in bold, and the last row
‘‘AVE.’’ presents the average accuracy and number of selected
genes.

As shown in Table 2, for the IWSS and IWSSr methods, the accu-
racy with all of the experimental datasets is improved markedly
with a large reduction in the feature dimensionality; specifically,
the accuracy reaches more than 95% for the SRBCT, Leukemia2
and DLBCL datasets with approximately 10.0 features selected,
whereas the IWSS method even reaches 100% accuracy with an
average of 9.4 features on the Ovarian dataset, and its average
accuracy increased by 5.1% compared with that obtained with
the same approach without feature selection. Although the SFS
method does not achieve an accuracy as impressive as that

Table 2
Experimental results of FSS with the 1NN classifier.

Dataset SFS IWSS2 IWSS3
IWSS2

r IWSS3
r

FCBF Original

accu #gene accu #gene accu #gene accu #gene accu #gene accu #gene accu #gene

Colon 72.4 4.5 76.0 10.8 73.6 11.4 78.8 6.8 75.7 5.1 78.0 15.5 77.1 2000
CNS 53.0 4.1 63.1 12.0 64.2 11.0 66.0 7.2 65.3 6.1 61.7 38.6 61.5 7129
SRBCT 84.3 5.5 96.7 11.1 97.8 12.0 96.1 6.3 88.9 5.2 92.9 42.0 91.1 2308
Leukemia1 87.4 2.0 89.0 8.4 93.0 8.7 93.0 3.5 90.4 3.4 94.7 70.6 90.2 7129
Leukemia2 82.0 3.9 95.8 6.1 98.8 5.4 94.6 4.4 98.6 3.5 91.3 53.9 88.9 5327
DLBCL 80.5 3.7 90.0 10.5 92.1 10.5 95.0 6.2 88.6 5.3 89.1 53.5 87.0 7129
Prostate 79.3 3.9 92.2 12.4 88.3 10.8 83.3 6.0 92.1 6.2 90.0 53.4 76.5 12600
Ovarian 98.8 2.9 99.2 8.7 100.0 9.4 98.4 4.4 98.8 4.5 100.0 31.1 95.2 15154
AVE. 79.7 3.8 87.8 10.0 88.5 9.9 88.2 5.6 87.3 4.9 87.2 44.8 83.4 7346.9

Table 3
Experimental results of FSS with the 3NN classifier.

Dataset SFS IWSS2 IWSS3
IWSS2

r IWSS3
r

FCBF Original

accu #gene accu #gene accu #gene accu #gene accu #gene accu #gene accu #gene

Colon 67.4 4.4 84.0 11.4 82.4 10.1 72.9 7.1 79.5 6.4 79.0 15.5 81.7 2000
CNS 53.6 2.5 66.7 12.4 70.0 12.2 76.9 6.2 56.9 6.9 70.0 38.6 65.9 7129
SRBCT 87.9 7.0 92.3 12.9 95.9 12.1 94.1 7.0 95.1 7.2 95.1 42.0 92.9 2308
Leukemia1 90.7 3.1 97.1 7.6 95.5 7.1 96.3 4.4 98.3 3.8 92.0 70.6 88.9 7129
Leukemia2 88.6 3.5 97.3 4.2 97.3 4.1 97.1 3.5 95.7 3.6 91.6 53.9 90.1 5327
DLBCL 83.3 3.5 93.6 10.7 93.6 9.9 92.5 5.3 89.5 5.3 92.1 53.5 87.7 7129
Prostate 87.4 4.6 94.3 10.6 90.2 10.0 96.0 6.2 89.4 5.9 91.1 53.4 79.3 12600
Ovarian 99.2 2.9 99.2 10.5 98.8 10.3 99.2 4.8 97.2 4.8 98.8 31.1 94.0 15154
AVE. 82.3 3.9 90.6 10.0 90.5 9.5 90.6 5.6 87.7 5.5 88.7 44.8 85.1 7346.9

A. Wang et al. / Knowledge-Based Systems 83 (2015) 81–91 85
obtained with IWSS and IWSSr, it greatly reduces the feature
dimensions, potentially enhances the generalization ability of the
KNN classifier, and reduces the time cost associated with con-
structing the classifier. Compared with FCBF, the IWSS and IWSSr
methods achieved better accuracy on the majority of the experi-
mental datasets and always obtained feature subsets with a smal-
ler size. Specifically, IWSS2 obtained an 87.8% average accuracy
with 10.0 features selected, and IWSS3 obtained an 88.5% average
accuracy with 9.9 features selected compared with the 87.2% aver-
age accuracy and 44.8 features of the FCBF. Additionally, IWSSr

2

obtained an 88.2% average accuracy with 5.6 features selected,
and IWSSr

3 obtained an 87.3% average accuracy with 4.9 features
selected. The SFS method obtained feature subsets with a markedly
smaller size, but its classification accuracy was not satisfactory and
was worse than that of FCBF in our experiments.

Similarly, as shown in Table 3, the IWSS and IWSSr methods
improved the classification accuracy with approximately 10 fea-
tures finally selected, which constituted a large reduction in the
feature dimensions on all of the experimental datasets, and the
average accuracy increased by 5.5% compared with that without
feature selection. Compared with FCBF, the IWSS and IWSSr meth-
ods achieved better accuracy and obtained feature subsets with a
smaller size on all of the experimental datasets. For example,
IWSS2 achieved a 90.6% average accuracy with 10.0 features
selected, and IWSSr

2 achieved a 90.6% average accuracy with 5.6
features selected, in comparison to the 88.7% average accuracy
with the 44.8 features of FCBF.

Tables 2 and 3 show that these methods achieved improved
classification accuracy with a significant reduction in the feature
dimensionality and that the IWSS and IWSSr methods outperform
the well-performing state-of-the-art feature selection algorithm
FCBF in terms of classification accuracy and the size of the final
selected feature subset, which demonstrates the effectiveness
and superiority of the proposed KNN-wrapper-based feature sub-
set selection method. However, their running time is not trivial.
For example, in our study, IWSS2 had a cost of 367.9 s (approxi-
mately 6 min) on the Prostate dataset for the 1NN case and
441.3 s (approximately 7.4 min) for the 3NN case. Thus, in the next
section, we explore the implementation details of these methods,
particularly the classifier that is used inside, that are required to
reduce the time complexity without degrading the quality of the
selected feature subset.
4. Improved wrapper feature selection

In the evaluation of the quality of a candidate feature subset, we
previously considered the KNN to be a black box and disregarded
the inside implementation details. In this approach, we construct
a new KNN classifier from scratch each time when evaluating a
new candidate feature subset. In the wrapper-based SFS and incre-
mental wrapper feature selection methods, the final feature sub-
sets are obtained incrementally by searching and evaluating the
candidate features one by one. In contrast, there are classifiers that
can be constructed incrementally along with the sequence of the
selected features rather than constructed from the beginning,
and the KNN algorithm is a typical case that can be constructed
incrementally when a new feature is included in the selected fea-
ture subset, as discussed in the second section.

Because there is no explicit training step for constructing a KNN
classifier, all of the computation of the KNN is deferred until the
classification, and the actual classification is conducted by compar-
ing the distance between the test instance and all of the training
instances and then choosing the k nearest neighbors to determine
the class label of the test instance. Therefore, we could construct a
distance matrix to maintain the distance between any two differ-
ent instances in the experimental dataset projected over the
selected feature subset. When evaluating a candidate feature, we
can incrementally construct a new KNN classifier by adding the
distance matrix on the candidate feature to the distance matrix
over the selected features rather than calculate it over all of the
features. To clarify this procedure, we will now introduce some
notation and two definitions before illustrating the improved
wrapper and incremental wrapper feature selection methods.

86 A. Wang et al. / Knowledge-Based Systems 83 (2015) 81–91
We first introduce the following notation, which is used in the
subsequent sections: Data is the experimental data with m
instances, n features and one target variable C; F = {F1, F2, . . .,Fn}
is the original feature space of Data; R = {R1, R2, . . .,Rn} is a ranked
feature set of F that is obtained using a filter method; S = {S1,
S2, . . .,Ss} (1 6 s 6 n) is the current selected feature subset; and Fi,
Ri, and Si are the ith features in F, R and S, respectively.

Definition 1 (attribute distance matrix). Given a predictive attri-
bute Fi, the attribute distance matrix of Fi consists of the distance
between any two different instances in the experimental dataset
projected over feature Fi. This matrix is noted as D(Fi).
Definition 2 (classifier distance matrix). Given the selected feature
subset S, the element of a classifier distance matrix is the distance
between any two different instances in the experimental dataset
projected over the feature subset S. This element is noted as D.

To provide an intuitive impression of the attribute distance
matrix and the classifier distance matrix, we present their logical
storage structure in Fig. 1. Each cell of the matrix stores the dis-
tance between any two instances, and each row or each column
is a distance vector between an instance and the other instances.
In actuality, because of the symmetry of the distance between
two instances, we need to store only the upper or lower semi-
triangular matrix to save on the physical storage space cost. For a
numerical variable (as is the case of the gene expression variable),
KNN with the Euclidean distance metric is often used. In our study,
to incrementally update the distance between two instances, the
squared Euclidean distance is stored in this matrix. Such an
approach ensures that we can incrementally construct the KNN
classifier along with the selection of features. When using this
matrix to find the k closest instances of a test instance, we can
use the square root (by taking the square root of each value in
the matrix), or we can directly use the value in the matrix because
distance is a non-negative and monotonically increasing metric
along with the selection of features.

The classifier distance matrix D not only acts as a fast KNN clas-
sifier to conduct the cross-validation for the experimental dataset
projected over the selected features but also works together with
the attribute distance matrix for the incremental construction of
a new classifier when evaluating the next candidate feature.
Fig. 1. Illustration of the cla
Based on the discussion above, we present the improved wrap-
per-based SFS method and the incremental wrapper method with
the KNN classifier embedded.

4.1. Improved wrapper-based SFS method with KNN

Compared with the classical wrapper-based SFS algorithm
(refer to Algorithm 1), we evaluated the quality of a feature subset
by performing a fivefold cross-validation on the classifier distance
matrix rather than first calculating the distance between the test
instance and all of the training instances and then conducting a
fivefold cross-validation. When considering a candidate feature
Fi, we first calculated the attribute distance matrix D(Fi), and we
then obtained a candidate classifier distance matrix Dnew by adding
D(Fi) to D and then performed a fivefold cross-validation on Dnew to
evaluate the quality of the feature subset S [Fi. For each run, we
added the feature Fi that achieves the best accuracy to the selected
subset S by replacing D with the corresponding Dnew, and we then
continued by selecting the next feature. The stop criterion was that
all of the features had been selected into S or that there was no
increase in the classification accuracy when evaluating the remain-
ing features. Algorithm 3 presents the details of the improved
KNN-embedded wrapper-based SFS method.

Algorithm 3. KNN-embedded wrapper-based SFS
ssifier distance matrix.

A. Wang et al. / Knowledge-Based Systems 83 (2015) 81–91 87
4.2. Improved incremental wrapper method with KNN

4.2.1. KNN-embedded IWSS
For the incremental wrapper methods, the candidate features

are evaluated by a classifier that runs over the ranked feature set
R. At the start of the algorithm, the first feature R1 is included into
S, and the classifier distance matrix D is calculated on S. When
evaluating a candidate feature Ri, KNN-embedded IWSS first calcu-
lates the attribute distance matrix D(Ri) and generates a candidate
classifier distance matrix Dnew by adding D and D(Ri). If the result of
a fivefold cross-validation on Dnew satisfies the relevance criteria
illustrated in the Relevance Criteria section, the candidate feature
Ri is included in S, and D is replaced by Dnew; otherwise, Ri is disre-
garded, and D is maintained unchanged. The above procedure is
repeated until no candidate feature is left in R.

4.2.2. KNN-embedded IWSSr
With the exception of the replacement operation in IWSSr, the

procedure of IWSSr is not different from that of IWSS. In terms of
the replacement operation in IWSSr, for a candidate feature Ri,
we must evaluate the quality of the candidate feature subset {S1,
S2, . . .,Sj�1, Sj+1, . . .,Ss, Ri}, which is obtained by swapping Sj and Ri

in the candidate classifier distance matrix Dnew. The result can be
calculated with the following formula:

Dnew ¼ D� DðSjÞ þ DðRiÞ: ð2Þ

For the replacement operation, IWSSr evaluates the candidate
subset that is obtained by swapping Sj and Ri and records the swap-
ping operation that achieves the best improved performance. In
each run, IWSSr updates the selected feature subset with the addi-
tion or replacement operation or keeps it unchanged. Because the
attribute distance matrix D(Sj) (Sj 2 S) has been computed and
stored in memory earlier when Sj was evaluated, the proposed
approach is expected to greatly accelerate the process. Algorithm
4 presents the pseudo-code of the KNN-embedded IWSSr method.

Algorithm 4. KNN-embedded IWSSr
5. Experiments and theoretical analysis

5.1. Experimental results

To demonstrate the performance gain in terms of a reduction in
the time cost, experiments were conducted over the same eight
microarray datasets used in the Experimental Evaluation sub-
section of Section 3. We implemented these algorithms in the
Matlab programming language and ran the experiments on a
Quad-core Intel Core i5 CPU (with a 3.2-GHz processor and 4G
RAM). For the KNN classifier, 1NN and 3NN were used as the
evaluation function in the feature selection. The experimental
results are presented in Tables 4 and 5.

Table 4 shows the actual time cost of the SFS, IWSS and IWSSr
methods using 1NN as the evaluation function, and Table 5 pre-
sents the experimental results obtained for 3NN. Each cell in the
table contains the time cost on the corresponding data: the former
is the time(s) spent for the case that considers KNN as a black box,
and the latter is the time cost obtained when KNN is explicitly
embedded. The last row ‘‘AVE.’’ represents the average time cost
over the eight microarray datasets. We also present the mean time
cost comparison on the eight microarray datasets for the two cases,
as shown in Figs. 2 and 3.

As shown in Table 4 and Fig. 2, the time cost is significantly
reduced in the case in which 1NN is explicitly embedded into the
wrapper procedure compared with the case in which 1NN is con-
sidered a black box inside. Specifically, in terms of running time,
it presents approximately 4.8-, 2.3- and 2.9-fold improvements
for the SFS, IWSS and IWSSr methods, respectively. As illustrated
in Table 5 and Fig. 3, a high time cost reduction was also achieved
when 3NN is explicitly embedded in the feature selection. This case
results in 3.4-, 1.7- and 3.9-fold improvements in the time cost for
the SFS, IWSS and IWSSr methods, respectively. The experimental
results for both 1NN and 3NN demonstrate the efficiency of our
proposed approach. Furthermore, because the procedure used for
feature selection, i.e., selecting features in a wrapper manner with
a sequential forward selection or incremental scheme, and the cri-
teria to include a candidate feature, i.e., using the relevance criteria
discussed in Section 3, in the KNN-embedded case are not different
from those of the black box case, the proposed approach guaran-
tees obtaining the same feature subset and achieving the same
high accuracy as in the black box case.

5.2. Time complexity analysis

As discussed in this section of the manuscript, we analyzed the
theoretical time complexity of the two types of feature selection
methods: the black box case in which the KNN-inside imple-
mentation details are disregarded and the case in which KNN is
explicitly embedded. For an experimental dataset with m
instances, n features and one target variable (m� n), we used a
fivefold cross-validation-based Relevance Criteria (1

5 m test
instances, and 4

5 m training instances) to determine whether a can-
didate feature is included in the selected subset, similarly to the
experiments. Therefore, the total computational complexity con-
sists mainly of the training time complexity and the test time com-
plexity. Both the average time complexity and the worst time
complexity were analyzed.

5.2.1. Black box case
In this case, there is no explicit training phase for the KNN clas-

sifier; thus, the training time complexity for SFS, IWSS and IWSSr is
a constant, which is noted as O(1). Therefore, we needed to analyze
only the test time complexity assuming that S = {S1, S2, . . . ,Ss} is the
selected feature subset, where s is the number of selected features.

(a) SFS:
� Testing: When including a new feature from the remaining

features, SFS must evaluate (n � s) candidate features. For
each evaluation, the time complexity for classifying an
instance is O 4

5 msþ 4
5 mlog2

4m
5

� �
; there are 1

5 m test instances

Table 4
Time(s) cost comparison for the black box and 1NN-embedded methods.

Dataset SFS IWSS2 IWSS3
IWSS2

r IWSS3
r

Colon 213.6/34.8 40.6/18.3 40.6/18.3 284.2/80.3 228.9/65.9
CNS 691.0/120.6 140.2/63.3 140.4/63.3 1079.4/259.5 908.3/272.7
SRBCT 326.7/43.2 53.8/23.2 54.0/23.2 369.2/99.0 310.5/97.1
Leukemia1 433.5/129.6 154.0/68.7 154.3/68.9 664.4/300.0 642.7/258.7
Leukemia2 575.8/108.3 121.7/55.3 121.7/54.7 642.2/253.6 532.7/239.7
DLBCL 711.0/132.4 162.5/70.8 162.2/70.7 1127.4/280.8 977.5/312.0
Prostate 1633.4/281.3 367.9/153.9 364.6/154.4 2385.5/745.4 2463.8/529.4
Ovarian 3016.4/678.5 963.0/426.4 977.5/426.6 4567.6/1790.6 4610.7/1751.8
AVE. 950.2/191.1 250.5/110.0 251.9/110.0 1390.0/476.1 1334.4/440.9

Table 5
Time(s) cost comparison for the black box and 3NN-embedded methods.

Dataset SFS IWSS2 IWSS3
IWSS2

r IWSS3
r

Colon 260.7/64.5 47.8/31.7 47.9/31.6 336.6/82.6 321.0/82.5
CNS 550.2/220.9 166.8/110.9 166.4/100.0 1134.2/241.6 1181.9/252.2
SRBCT 494.8/76.9 62.6/38.4 62.4/38.5 476.7/108.1 497.3/100.4
Leukemia1 725.8/244.0 185.6/121.2 183.3/121.2 975.0/339.5 867.6/279.0
Leukemia2 635.1/186.5 140.0/91.8 139.4/92.3 629.7/364.6 638.2/211.1
DLBCL 833.9/252.9 196.7/126.4 195.6/126.7 1187.5/353.5 1199.3/303.4
Prostate 2288.5/535.9 441.3/267.6 438.6/267.4 2978.6/537.0 2868.7/536.8
Ovarian 4653.4/1505.9 1432.8/754.6 1418.7/760.2 7276.9/1782.3 7441.9/1566.8
AVE. 1305.3/385.9 334.2/192.8 331.5/192.2 1874.4/476.1 1877.0/416.5

Fig. 2. Mean time cost comparison on the eight microarray data with the 1NN
classifier.

Fig. 3. Mean time cost comparison on the eight microarray datasets with the 3NN
classifier.

88 A. Wang et al. / Knowledge-Based Systems 83 (2015) 81–91
to be evaluated, and the above process is repeated five
times because of the fivefold cross-validation. Thus, the
time complexity is O

Ps
k¼1 ð45 mkþ 4

5 mlog2
4m
5 Þ � 1

5 m � 5 �
��

ðn� kÞÞÞ ¼ Oðm2ð3n� 2sÞðs2 þ sÞ þm2nslog2mÞ, with s
features finally selected, and the worst case is
O(m2n3 + m2n2 + m2n2 log 2m) = O(m2n3) if all of the
features are selected (n = s).

(b) IWSS:
� Testing: The time complexity for classifying an instance is

O 4
5 msþ 4

5 mlog2
4
5 m

� �
; the number of iterations is n because

n features need to be evaluated; and the process is repeated
five times because of the fivefold cross-validation for all of
the 1

5 m test instances. Thus, the time complexity is
O 4

5 msþ 4
5 mlog2

4m
5

� �
� n � 5 � 1

5 m
� �

¼ Oðm2nsþm2nlog2mÞ for
the average case and O(m2n2) for the worst case when all
of the features are included (n = s).

(c) IWSSr:
� Testing: Slightly different from IWSS, IWSSr must evaluate

(s + 1) candidate subsets with s replacement and one addi-
tion operation within each iteration. Thus, the test time
complexity of IWSSr is O 4

5 msþ 4
5 mlog2

4m
5

� �
� n � ðsþ 1Þ�

�

5 � 1
5 mÞ ¼ Oðm2ns2 þm2nsþm2nlog2mÞ, and the worst case

is O(m2n3) when all of the features are included (n = s).

5.2.2. KNN-embedded case
For the KNN-embedded case, because the fivefold cross-val-

idation-based relevance criteria calculation is conducted on the
classifier distance matrix D, we therefore must maintain this
matrix when evaluating the candidate features, and we defined
the calculation of D as the training of the KNN classifier. In this
case, we must consider the training time complexity.

(a) SFS:
� Training: For the attribute distance matrix of each feature,

we must perform a calculation with time complexity
O(nm2) when selecting the first feature. During each itera-
tion, we must calculate (n � s) classifier distance matrices
with a time complexity of O(m2(n � s)); the above process
is repeated s times because s features are selected. Thus,
the time complexity is O(m2(ns + n � s2)).

Table 6
Summary of the time complexity for the black box and KNN-embedded methods.

Type SFS IWSS IWSSr Item

Average Worst Average Worst Average Worst

Black box O(1) O(1) O(1) O(1) O(1) O(1) Training
O(m2(3n � 2s)(s2 + s) + m2nslog2m) O(m2n3) O(m2ns + m2nlog2m) O(m2n2) O(m2ns2 + m2ns + m2nlog2m) O(m2n3) Test
O(m2(3n � 2s)(s2 + s) + m2nslog2m) O(m2n3) O(m2ns + m2nlog2m) O(m2n2) O(m2ns2 + m2ns + m2nlog2m) O(m2n3) Total

Embedded O(m2(ns + n � s2)) O(m2n2) O(m2n) O(m2n) O(m2ns + m2n) O(m2n2) Training
O(m2(ns + s � s2)log2m) O(m2n) O(m2nlog2m) O(m2nlog2m) O(m2n(s + 1)log2m) O(m2n2log2m) Test
O(m2(ns + s � s2)log2m) O(m2n2) O(m2nlog2m) O(m2nlog2m) O(m2nslog2m) O(m2n2log2m) Total

Table 7
Summary of the space complexity for the black box and KNN-embedded methods.

Type SFS IWSS IWSSr

Average Worst Average Worst Average Worst

Black box O(mn + m) O(mn + m) O(mn + m) O(mn + m) O(mn + m) O(mn + m)
Embedded O(m2n + m2) O(m2n + m2) O(mn + m2) O(mn + m2) O(m2s + mn �ms + m2) O(m2n + m2)

A. Wang et al. / Knowledge-Based Systems 83 (2015) 81–91 89
� Testing: The time complexity for classifying an instance is
Oð45 mlog2

4m
5) because the classifier distance matrix D

facilitates us in finding its k closest neighbors by sorting
the distance vector of D; in each iteration, (n � s) classifier
distance matrices are evaluated for each of 1

5 m test
instances, and the above process is repeated five times
because of the fivefold cross-validation. Thus, the time com-
plexity is O(m2(ns + s � s2) log2m), and the worst case is
O(m2n log2m).

(b) IWSS:
� Training: For each of the n iterations, we must calculate an

attribute distance matrix and a classifier distance matrix
with a time complexity of O(m2); thus, the training time
complexity is O(m2n).

� Testing: There are 1
5 m test instances; the time complexity

for classifying an instance is Oð45 mlog2
4m
5), and the time of

the iterations is n; the above process is repeated five times
because of the fivefold cross-validation. Thus, the time
complexity is O 4

5 mlog2
4m
5 � n � m

5 � 5
� �

¼ Oðm2nlog2mÞ.
(c) IWSSr:
� Training: Slightly different from IWSS, IWSSr must calcu-

late (s + 1) classifier distance matrices rather than one.
Thus, the time complexity is O(m2n(s + 1)).

� Testing: For each iteration, we must evaluate s additional
candidates; thus, the test time complexity is O 4

5 mlog2
4m
5

�

� n � ðsþ 1Þ � 5 � m
5Þ ¼ Oðm2nðsþ 1Þlog2mÞ: The worst is

O(m2n2 log2m).

A summary of the training and test time complexities as well as
the total time complexity for the three methods is presented in
Table 6. Although the training time complexity for the KNN-
embedded case increases, the test complexity is greatly reduced,
which leads to a reduction in the total time complexity. We
observed that KNN-embedded methods are approximately s/log2m
times faster than the black box cases for an average case and at
least n/log2m times faster in the worst case, which demonstrates
that a larger number of features selected is associated with a
greater reduction in the time cost.

5.3. Space complexity analysis

5.3.1. Black box case
Because the experimental data with m instances, n attributes

and one target variable needs to be loaded into memory and there
is no KNN classifier to be trained, the space complexity is
O(m ⁄ (n + 1)) = O(mn + m) for SFS, IWSS and IWSSr.
5.3.2. KNN-embedded case
We are required to not only load the experimental data into

memory but also maintain a classifier distance matrix and the
corresponding attribute distance matrices. Therefore, the total
space complexity arises mainly from these three parts.

For SFS, the space complexities are O(mn + m) for loading
experimental data into memory, O(m(m � 1)) for storing the clas-
sifier distance matrix and O(nm(m � 1)) for storing the attribute
distance matrices. Therefore, the total space complexity is
O(m2n + m2), as determined by adding the three complexities
together.

For IWSS, IWSS is not required to maintain the attribute
distance matrix and instead maintains the classifier distance
matrix; thus, the space complexity is O((m + mn) + m(m � 1)) =
O(m2 + mn).

For IWSSr, an additional s attribute distance matrices are
required to be stored compared with IWSS because of the
replacement operation; thus, the space complexity is
O(m2 + mn + m2s �ms), and the worst case is O(m2n + m2) when
all of the features are evaluated (n = s).

Table 7 summarizes the space complexity for both the average
case and the worst case. The results show that, even for the worst
case in SFS, the difference in the space complexity between the
black box case and the KNN-embedded case is very small (less than
a factor of m), as is the case for the IWSSr method. For IWSS, the
space complexity for the embedded case is O(mn + m2) compared
with O(mn + m) for the black box case, and the additional space
cost is negligible because m� n. For example, for the case of the
Ovarian dataset, which has the highest dimensions (15,154 genes)
and the largest number of samples (253 samples) in our experi-
ment, the space costs obtained assuming that 8 bytes are required
to code a double are 29.7 MB for SFS, 29.7 MB for IWSS and
34.6 MB for IWSSr in the KNN-embedded case compared to
14.9 MB for the black box case. The space complexity analysis
demonstrates that the extra space cost in the RAM memory is
affordable in current practices.
6. Conclusions

In this study, we proposed an approach for accelerating wrap-
per-based feature subset selection methods with an embedded

90 A. Wang et al. / Knowledge-Based Systems 83 (2015) 81–91
KNN classifier. The time cost in evaluating the quality of a candi-
date feature arises primarily from the inner fivefold cross-
validation when using the KNN classifier as a black box. Considering
this, we proposed the construction and dynamic maintenance of
a classifier distance matrix (which consists of the distance between
instances projected over the selected feature subset) rather than
recalculation of the distance starting from scratch each time when
a new feature is considered. This approach thus can greatly speed
up the evaluation process and reduce the actual running time cost
by avoiding massively repetitive calculations. Also, the proposed
approach can apply to accelerating three types of feature selection
methods, including wrapper methods with SFS, IWSS and IWSSr.
Since the feature selection procedure and the criteria to include a
candidate feature of the proposed approach are not different from
the original approach, it is guaranteed that the proposed methods
achieve the same feature subset as the original ones. To show the
effectiveness of wrapper-based SFS, IWSS and IWSSr methods in
selecting informative features, experiments were first conducted
on eight publicly available microarray datasets. In comparison
with the well-performing state-of-the-art feature selection method
FCBF, the wrapper method with KNN outperforms FCBF in terms of
classification accuracy and the size of the finally selected features.
To demonstrate the performance gain in terms of time cost reduc-
tion, we then analyzed the theoretical time complexity and con-
ducted an experimental study on the eight publicly available
microarray datasets to show the actual time cost for both the black
box case and the KNN-embedded case. The theoretical analysis and
experimental results demonstrated the efficiency of the proposed
approach in terms of running time without degrading the accuracy.
In addition, a space complexity analysis showed that the additional
space overhead is clearly affordable in practice when handling
gene expression profiles.

Notably, in our study, the squared Euclidean distance rather
than the Euclidean distance is stored in the classifier distance
matrix to save on the computational cost. Because distance is a
non-negative metric, the squared Euclidean distance and
Euclidean distance are equal for measuring the relative distance
between the test instance and the training instances, which guar-
antees obtaining the same feature subset. If the Euclidean distance
is stored in the classifier distance matrix, we would need to first
square the distance and then add it to the attribute distance matrix
to obtain a candidate classifier distance matrix for a distance com-
parison. Each time after selecting a new feature, we first calculate
the square root of the distance and then store it in the classifier dis-
tance matrix. Obviously, the latter performs additional calculations
and is more time-consuming compared with the former.

Furthermore, compared with the case of considering KNN as a
black box, the space complexity of our proposed method is
O(m2n + m2) for SFS, O(mn + m2) for IWSS and O(m2n + m2) for
IWSSr. Typically, if we maintain only a temporary attribute dis-
tance matrix rather than keeping the attribute distance matrices
for all of the features, the space complexities of SFS and IWSSr
are equal to that of IWSS, O(mn + m2). In handling gene expression
profiles with high dimensionality (thousands of genes) and small
sample sizes (as low as tens of samples), the space complexity of
the proposed method is approximately equal to that of the black
box case, i.e., O(mn + m), which indicates that the additional space
cost of the proposed method is quite small and can be easily met
by today’s computers for gene expression profile analysis. In han-
dling data with ultra-large dimensionality and samples, the classi-
fier distance matrix may not fit into the memory. Then, we can turn
to the distributed computing paradigm, such as the MapReduce
Framework, to divide the distance matrix into several small parts
by row or column and store them on distributed hosts [45]. We
would then use Map operations to calculate the attribute distance
matrix and the candidate classifier distance matrix and use Reduce
operations to decide whether to select a candidate feature and
update these matrices in parallel [46]. In our future research, we
plan to study other search strategies, such as sequential backward
selection and sequential floating selection, as well as to explore
other learning algorithms that have similar properties.

Acknowledgments

This work was supported partially by the ‘‘111 Project’’ of the
Ministry of Education and State Administration of Foreign
Experts Affairs (No. B14025), the International S&T Cooperation
Program of China (No. 2014DFA11310), the Major Project of the
Natural Science Foundation for Anhui Province Higher Education
(No. KJ2011ZD06), the Natural Science Foundation of China (Nos.
61472057, 61305064, 51274078), and the ‘‘University Featured
Project’’ of the Ministry of Education (No. TS2013HFGY031).
Aiguo Wang was a visiting Ph.D. student at the Center for
Biomedical Informatics at Harvard Medical School who was spon-
sored by the China Scholarship Council. The authors are very grate-
ful to the anonymous reviewers for their constructive comments
and suggestions for the improvement of this research.

References

[1] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, et al., Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring, Science 286 (5439) (1999) 531–537.

[2] Y. Saeys, I. Inza, P. Larrañaga, A review of feature selection techniques in
bioinformatics, Bioinformatics 23 (19) (2007) 2507–2517.

[3] G. Piatetsky-Shapiro, P. Tamayo, Microarray data mining: facing the
challenges, ACM SIGKDD Explor. Newslett. 5 (2) (2003) 1–5.

[4] J. Hua, W.D. Tembe, E.R. Dougherty, Performance of feature-selection methods
in the classification of high-dimension data, Pattern Recogn. 42 (3) (2009)
409–424.

[5] V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, An ensemble of
filters and classifiers for microarray data classification, Pattern Recogn. 45 (1)
(2012) 531–539.

[6] A. Jain, R. Duin, J. Mao, Statistical pattern recognition: a review, IEEE Trans.
Pattern Anal. Mach. Intell. 22 (1) (2000) 4–37.

[7] I.A. Gheyas, L.S. Smith, Feature subset selection in large dimensionality
domains, Pattern Recogn. 43 (1) (2010) 5–13.

[8] I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer
classification using support vector machines, Mach. Learn. 46 (1–3) (2002)
389–422.

[9] I. Guyon, A. Elisseeff, An introduction to variable and feature selection, J. Mach.
Learn. Res. (2003) 1157–1182.

[10] D. Koller, M. Sahami, Toward optimal feature selection, 1996.
[11] M. Dash, H. Liu, Consistency-based search in feature selection, Artif. Intell. 151

(1) (2003) 155–176.
[12] W.J. You, Z.J. Yang, G.L. Ji, PLS-based recursive feature elimination for high-

dimensional small sample, Knowl.-Based Syst. 55 (2014) 15–28.
[13] R. Kohavi, H. George, Wrappers for feature subset selection, Artif. Intell. 97 (1)

(1997) 273–324.
[14] I. Inza, P. Larrañaga, R. Blanco, A.J. Cerrolaza, Filter versus wrapper gene

selection approaches in DNA microarray domains, Artif. Intell. Med. 31 (2)
(2004) 91–103.

[15] J. Gama, R. Rocha, P. Medas, Accurate decision trees for mining high-speed data
streams, in: Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ACM, 2003.

[16] P. Bermejo, J. Gámez, J. Puerta, Speeding up incremental wrapper feature
subset selection with Naive Bayes classifier, Knowl.-Based Syst. 55 (2014)
140–147.

[17] P. Bermejo, L. Ossa, J. Gámez, J. Puerta, Fast wrapper feature subset selection in
high-dimensional datasets by means of filter re-ranking, Knowl.-Based Syst. 25
(1) (2012) 35–44.

[18] M. Gutlein, E. Frank, M. Hall, A. Karwath, Large-scale attribute selection using
wrappers, in: IEEE Symposium on Computational Intelligence and Data
Mining, CIDM’09, IEEE, 2009.

[19] A. Wang, N. An, G. Chen, L. Li, G. Alterovitz, Accelerating incremental wrapper
based gene selection with K-Nearest-Neighbor, in: IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2014, pp. 21–23.

[20] D.W. Aha, D. Kibler, M.K. Albert, Instance-based learning algorithms, Mach.
Learn. 6 (1) (1991) 37–66.

[21] P. Langley, W. Iba, Average-case analysis of a nearest neighbor algorithm, in:
IJCAI, 1993.

[22] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans. Inform.
Theor. 13 (1) (1967) 21–27.

[23] E. Xing, M. Jordan, R. Karp, Feature selection for high-dimensional genomic
microarray data, in: ICML, vol. 1, 2001, pp. 601–608.

http://refhub.elsevier.com/S0950-7051(15)00103-3/h0005
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0005
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0005
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0010
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0010
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0015
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0015
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0020
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0020
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0020
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0025
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0025
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0025
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0030
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0030
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0035
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0035
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0040
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0040
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0040
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0045
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0045
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0055
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0055
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0060
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0060
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0065
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0065
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0070
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0070
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0070
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0075
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0075
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0075
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0075
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0080
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0080
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0080
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0085
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0085
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0085
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0090
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0090
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0090
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0090
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0095
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0095
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0095
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0095
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0100
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0100
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0110
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0110

A. Wang et al. / Knowledge-Based Systems 83 (2015) 81–91 91
[24] X. Sun, Y. Liu, M. Xu, H. Chen, J. Han Sun, Feature selection using dynamic
weights for classification, Knowl.-Based Syst. 37 (2013) 541–549.

[25] K. Moorthy, M. Mohamad, Random forest for gene selection and microarray
data classification, Bioinformation 7 (3) (2011) 142.

[26] H. Liu, L. Liu, H. Zhang, Ensemble gene selection for cancer classification,
Pattern Recogn. 43 (8) (2010) 2763–2772.

[27] S. Li, E. Harner, D. Adjeroh, Random KNN feature selection – a fast and stable
alternative to Random Forests, BMC Bioinformatics 12 (1) (2011) 450.

[28] G. Guo, D. Neagu, M. Cronin, Using kNN model for automatic feature selection,
in: Pattern Recognition and Data Mining, Springer, Berlin, Heidelberg, 2005,
pp. 410–419.

[29] H.L. Chen, B. Yang, G. Wang, J. Liu, X. Xu, S.J. Wang, D.Y. Liu, A novel bankruptcy
prediction model based on an adaptive fuzzy k-nearest neighbor method,
Knowl.-Based Syst. 24 (8) (2011) 1348–1359.

[30] M. Dash, H. Liu, Feature selection for classification, Intell. Data Anal. 1 (3)
(1997) 131–156.

[31] R. Ruiz, J. Riquelme, J. Aguilar-Ruiz, Incremental wrapper-based gene selection
from microarray data for cancer classification, Pattern Recogn. 39 (12) (2006)
2383–2392.

[32] P. Bermejo, J. Gámez, J. Puerta, Incremental wrapper-based subset selection
with replacement: an advantageous alternative to sequential forward
selection, in: IEEE Symposium on Computational Intelligence and Data
Mining, CIDM’09, IEEE, 2009.

[33] P. Bermejo, J. Gámez, J. Puerta, On incremental wrapper-based attribute
selection: experimental analysis of the relevance criteria, in: Proceedings of
IPMU’08, 2008, pp. 638–645.

[34] U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, A.J. Levine, Broad
patterns of gene expression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotide arrays, Proc. Natl. Acad. Sci.
USA 96 (12) (1999) 6745–6750.

[35] S.L. Pomeroy, P. Tamayo, M. Gaasenbeek, L.M. Sturla, M. Angelo, M.E.
McLaughlin, T.R. Golub, Prediction of central nervous system embryonal
tumour outcome based on gene expression, Nature 415 (6870) (2002) 436–
442.

[36] D. Singh, P.G. Febbo, K. Ross, D.G. Jackson, J. Manola, C. Ladd, P. Tamayo, et al.,
Gene expression correlates of clinical prostate cancer behavior, Cancer Cell 1
(2) (2002) 203–209.

[37] J. Khan, J.S. Wei, M. Ringner, L.H. Saal, M. Ladanyi, F. Westermann, F. Berthold,
et al., Classification and diagnostic prediction of cancers using gene expression
profiling and artificial neural networks, Nat. Med. 7 (6) (2001) 673–679.

[38] M.A. Shipp, K.N. Ross, P. Tamayo, A.P. Weng, J.L. Kutok, R. Aguiar, M.
Gaasenbeek, et al., Diffuse large B-cell lymphoma outcome prediction by
gene-expression profiling and supervised machine learning, Nat. Med. 8 (1)
(2002) 68–74.

[39] E.F. Petricoin III, A.M. Ardekani, B.A. Hitt, P.J. Levine, V.A. Fusaro, S.M.
Steinberg, L.A. Liotta, Use of proteomic patterns in serum to identify ovarian
cancer, Lancet 359 (9306) (2002) 572–577.

[40] M. Robnik-Šikonja, I. Kononenko, Theoretical and empirical analysis of ReliefF
and RReliefF, Mach. Learn. 53 (1–2) (2003) 23–69.

[41] U.M. Braga-Neto, E.R. Dougherty, Is cross-validation valid for small-sample
microarray classification?, Bioinformatics 20 (3) (2004) 374–380

[42] S.K. Singhi, H. Liu, Feature subset selection bias for classification learning, in:
V. Anbu (Ed.), Proceedings of the 23rd International Conference on Machine
Learning, ACM, 2006.

[43] L. Yu, H. Liu, Feature selection for high-dimensional data: a fast correlation-
based filter solution, in: ICML, vol. 3, 2003.

[44] L. Yu, H. Liu, Efficient feature selection via analysis of relevance and
redundancy, J. Mach. Learn. Res. 5 (2004) 1205–1224.

[45] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large
clusters, Commun. ACM 51 (1) (2008) 107–113.

[46] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.H. Bae, J. Qiu, G. Fox, Twister: a
runtime for iterative mapreduce, in: Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, ACM,
2010.

http://refhub.elsevier.com/S0950-7051(15)00103-3/h0120
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0120
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0125
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0125
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0130
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0130
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0135
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0135
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0140
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0140
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0140
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0140
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0145
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0145
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0145
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0150
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0150
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0155
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0155
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0155
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0160
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0160
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0160
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0160
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0160
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0170
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0170
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0170
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0170
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0175
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0175
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0175
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0175
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0180
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0180
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0180
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0185
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0185
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0185
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0190
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0190
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0190
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0190
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0195
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0195
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0195
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0200
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0200
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0205
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0205
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0210
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0210
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0210
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0210
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0220
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0220
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0225
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0225
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0230
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0230
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0230
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0230
http://refhub.elsevier.com/S0950-7051(15)00103-3/h0230

	Accelerating wrapper-based feature selection with K-nearest-neighbor
	1 Introduction
	2 K-nearest-neighbor classifier
	3 Wrapper-based feature selection
	3.1 Wrapper-based feature selection with sequential forward selection
	3.2 Incremental wrapper-based feature selection
	3.3 Relevance criteria
	3.4 Experimental evaluation

	4 Improved wrapper feature selection
	4.1 Improved wrapper-based SFS method with KNN
	4.2 Improved incremental wrapper method with KNN
	4.2.1 KNN-embedded IWSS
	4.2.2 KNN-embedded IWSSr

	5 Experiments and theoretical analysis
	5.1 Experimental results
	5.2 Time complexity analysis
	5.2.1 Black box case
	5.2.2 KNN-embedded case

	5.3 Space complexity analysis
	5.3.1 Black box case
	5.3.2 KNN-embedded case

	6 Conclusions
	Acknowledgments
	References

