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events into segments and encode each segment into either a
vector or two-dimensional matrix. Particularly, three different
feature representations are presented for the vector form. Afterwards, we combine the encoded features with four
typical deep learning models and optimize corresponding activity recognizers to study their sensitivity to different
feature encodings. Furthermore, we include seven commonly used shallow classification models for comparison
purposes. Finally, we conduct extensive experiments on three publicly available smart home datasets. Results indicate
that the performance of both deep learning and shallow models is closely associated with the raw signal encodings
and demonstrate the superiority of one-dimensional convolutional neural networks over its competitors in terms of
generalization across scenarios. Besides, we preliminarily explore the influence of NULL class on an activity recognizer
and experimentally show its negative impact on overall accuracy, enlightening relevant studies to consider it in developing
a practical activity recognition system.
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|. INTRODUCTION

T HAS been known that our world has been stepping
towards the aging society and facing significant economic

and social issues such as the financial stress, increasing
elderly healthcare demands, and unbalanced supply-demand.
Consequently, due to the high expenditure of healthcare costs
and the willingness of the elderly to live independently in
their own places, smart homes equipped with various types
of sensors and actuators are consistently emerging with an
aim to provide pervasive and context-aware services and to
help maintain a healthy, safe, and functional life [1], [2].
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Particularly, with the development of sensor technology, per-
vasive computing, internet of things, and artificial intelligence,
ambient assisted living systems deployed in smart homes
can intelligently perceive and act on physical surroundings
and potentially support a variety of applications that range
from fall detection, long-term behavior pattern analyses, and
health and wellness evaluation to chronic disease management,
consistent rehabilitation instruction, and timely medication
reminder [3]-[5]. For residents wish to stay at their own places
independently and functionally, they should have the ability to
conduct Activities of Daily Living (ADLs) such as cooking,
drinking, preparing dinner, washing grooming, and eating [6],
and healthcare providers use ADLSs to measure an individual’s
functional status. Therefore, accurately recognizing in-home
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activities plays an essential role in understanding the rela-
tionship between residents and their surroundings, where it
functions as middleware in bridging the low-level sensor data
and high-level human-centric applications [7], [8].

Due to the inherent complexity of human behavior that
is characterized by uncertainty and diversity, automatically
and accurately inferring ongoing activities remains a chal-
lenging yet rewarding research topic that has been attracting
attentions from researchers [9]. Typically, there exist inter-
subject variation, where different people can perform the same
activity in a different way, and intra-subject variation, where
one performs an activity differently in different situations
[10]. For example, an individual probably prepares dinner in
a different way of using kitchenware and dinnerware, and
one walks with varying step sizes and speeds at different
time. Also, there are activities that can trigger similar sensor
readings, which deteriorates the performance of an activity
recognizer [10]. With the aim to adapt to various application
scenarios and to obtain satisfactory recognition performance,
researchers have used different kinds of sensing technologies
and models towards adaptive activity recognition. Generally,
existing activity recognition methods could be broadly grouped
into three categories based on the used sensing technology
[8], [11]: vision-, wearable sensor-, and environment sensor-
based methods. Vision methods capture a series of images
with a camera or video to recognize activities and they have
a wide range of applications such as surveillance, security
and safety [12]. One typical example is the use of depth-
camera for motion sensing games. One major drawback is that
they suffer from the privacy issue and are not welcome in a
smart home setting [13]. Their actual use is further limited by
ambient occlusion, illumination variations, and environmental
noise [12]. Wearable sensor-based methods benefit from the
miniature of sensing units and they recognize human activities
by first collecting sensor data from wearable devices and
then training an activity recognizer [14]. Particularly, we get
multiple heterogeneous or homogeneous sensing units attached
to different parts of human body (e.g., the wrist, arm, leg,
and waist) [15]. Obviously, one is required to carry/wear
one or more devices all the time, which inevitably brings
inconvenience to individuals when performing ADLs [16].
This largely prevents it from being an ideal plan for the
elderly care. In contrast, environment sensor-based methods
place sensing units on household objects and infer ADLs by
capturing and analyzing the interaction between an individual
and the ambient objects [2], [17]. For example, Yatbaz er al.
used a set of simple state-change sensors to refer human
activities [16]. Cook et al. implemented the CASAS architec-
ture that utilized contact sensors, motion sensors and infrared
detectors to support high-level applications [2]. Such methods
have advantages of easy deployment, low costs, and inherent
less-intrusiveness, and thus are considered a promising way to
automate the recognition of in-home ADLs.

According to the activity recognition chain that consists
of data collection, feature encoding, model optimization and
prediction, the performance of an activity recognizer is largely
determined by the choice of classification models and the way
to encode the sensor data [10], [18]. Accordingly, researchers

have conducted considerable work in exploring effective meth-
ods that range from generative models (e.g., naive Bayes and
hidden Markov model) to discriminant models (e.g., support
vector machine, decision tree, and conditional random field)
[13]. Since most of them have a shallow structure and rely on
hand-crafted features, they probably fail to capture the com-
plex relationships among the raw sensor signals. In contrast,
deep learning models have the end-to-end learning capability
to automatically learn high-level features from raw signals
without the guidance of human experts, which facilitates
their wide applications in fields such as speech recognition,
computer vision, and natural language processing [19]. They
have also advanced wearable sensor-based activity recogni-
tion. However, different from wearable sensors that generate
sensor readings with constant sampling rates, environment
sensors work in an event-triggering scheme and have irregular
sampling rates. How to encode the events of environment
sensors remains underexplored and this presents a challenge
to the proper use of multichannel time-series sensor events for
inferring ADLs. Although there are many classification models
available for activity recognition, few studies, to the best of
our knowledge, systematically investigate how to effectively
encode the binary streaming events and accordingly evaluate
the relationships with the finally optimized activity recognizer.
Besides, different from the traditional classification problems,
activity recognition inherently faces the NULL class problem,
where parts of the sensor readings are irrelevant to the pre-
defined activities of an application. In most cases, the NULL
class represents a large unknown space and is accompanied
with human behavior and it is difficult, if not impossible,
to enumerate all activities in a specific application, however,
few studies consider it and further quantitatively evaluate its
influence on an activity recognizer. To this end, we herein
present two different methods to process the time-series sensor
events and evaluate their combinations with deep learning and
shallow models and further evaluate the NULL class problem.
This potentially guides users in handling the streaming envi-
ronment sensor signals and enlightens further studies to con-
sider the NULL class in developing real-world applications.
The main contributions of this study are itemized as follows.
(1) We analyze and compare the signals of wearable sensors
and environment sensors and propose two methods to handle
the multichannel binary sensor data. Specifically, we encode
the sensor data into either a vector or two-dimensional matrix.
Furthermore, we present three specific instantiations for the
vector form, including binary, numeral, and probability rep-
resentations. This guides users in how to encode the sensor
events. (2) We detail how to combine the encoded features
to four typical deep learning models (i.e., autoencoder, deep
belief network, convolutional neural network, and long-short
term memory network). Moreover, we include other seven
shallow models for comparison purposes. (3) Due to char-
acteristics of human behavior, it is not trivial to filter out the
NULL class if an individual is allowed to perform activities in
a natural setting. We explicitly evaluate the influence of NULL
class on an activity recognizer with the aim to prompt users
to consider it in comprehensively evaluating and developing
a practical activity recognizer. (4) Extensive experiments are
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conducted on public smart home datasets collected with binary
environment sensors. Results indicate that the performance of
both deep learning and shallow models is closely associated
with the feature encodings and that the NULL class generally
lowers recognition accuracy.

The rest of this paper is organized as follows. In section II,
we review related work on human activity recognition from the
perspective of prediction models. Section III illustrates how to
encode streaming binary sensor data and details how to feed
the encoded features to deep learning models. Environmental
setup, results and analyses are illustrated in section IV. The
last section concludes this study with a brief summary and
discussions.

Il. RELATED WORK

To adapt to various human-centric application scenarios and
to obtain satisfactory recognition performance, recent years
have witnessed considerable work in developing a wealth
of sensing techniques and a number of models for environ-
ment sensor-based activity recognition [20], [21]. We can
broadly group existing activity recognizers into knowledge-
driven methods and data-driven methods [22], [23]. The
former requires an abstract model of domain knowledge to
define activity specification. They have an advantage of easy
interpretation and being robust to noise and incomplete data
[24]. For example, Chen et al. used the logical reasoning and
logical knowledge to explicitly model context and activities
[25]. One limitation of such methods is the acquisition of
expert knowledge of a specific domain. In contrast, data-
driven methods only rely on data to train an activity recog-
nizer that associates sensor data with corresponding activity
labels. Accordingly, researchers have presented many models
that range from generative models (e.g., naive Bayes and
hidden Markov model) and discriminant models (e.g., support
vector machine and decision tree) to ensemble models (e.g.,
bagging, boosting and stacking) [10]. For example, Ord6nez
et al. combined artificial neural networks and support vector
machine within the hidden Markov model to train an activity
recognizer [26]. However, due to the inherent complexity of
human behavior, shallow models probably fail to learn the non-
linear relationships among raw sensor data [18]. Moreover,
most of them rely on domain knowledge to extract features and
treat feature extraction and classifier training as two separate
steps, which leads to sub-optimization.

In contrast to shallow models, deep learning models have
the ability to automatically learn complex features from low-
level signals and jointly optimize the steps of feature learning
and classifier training. There are studies that apply deep
learning models to activity recognition [27]. For example,
Plotz et al. are among the first researchers that used prin-
cipal component analysis and deep belief networks (DBN)
to develop an activity recognition framework for wearable
computing applications [22]. They conducted experiments on
accelerometer data, which showed the benefits of feature
learning. Particularly, DBN nonlinearly transforms the original
features into high-level features. Teng er al. applied deep
convolution neural networks (CNNs) on time-series data for
activity recognition [28]. Experimental results indicate the

proposed model outperforms its competitors. Ronao and Cho
applied a deep CNN to the data collected with smartphones
and trained an effective and efficient activity recognition
model [29]. To use the temporal dynamics associated with
activities, Ordéfiez and Roggen proposed a convolutional
long-short term memory (LSTM) recurrent neural network
and applied it to automatically learn latent features from
multimodal wearable sensor data and to train an activity
recognizer [30]. They evaluated the model on two datasets
and experimental results showed its effectiveness. Guan et al.
combined diverse LSTMs under an ensemble framework for
wearable sensor-based activity recognition [31]. Experimental
results showed the superiority of the LSTM ensemble over
its single component. Besides wearable sensors, researcher
have applied deep learning to train environment sensor-based
activity recognition models. For example, Chen et al. used a
denoising autoencoder network to train an activity recognizer
and compared it with DBN [7]. Gochoo et al. used deep
CNN s to recognize ADLs of the elderly [30], where they took
as input the activity image and applied the two-dimensional
convolution to learn features. Liciotti et al. explored LSTM
networks and proposed several variants for modelling the
temporal sequences of sensor events [32]. They fed the sensor
events into LSTM-based model. The above work advances
the in-home activity recognition with environment sensors,
while few studies systematically investigate how to properly
encode the streaming binary events and accordingly evaluate
their combinations with deep learning models. Particularly,
although deep learning models trained on wearable sensor data
provide users valuable experience, the two types of sensors
have inherent differences. Wearable sensors usually work at
constant sampling rates and output continuous sensor readings,
and the signal intensities are naturally used to infer on-going
human activities. In contrast, environment sensors, working in
an event-triggering scheme, only generate firings when there
are interactions between an individual and the ambient objects,
and thus they have irregular sampling rates. This presents a
new scenario for streaming data analysis and also motivates
us to study how to encode the multichannel streaming binary
events for activity recognition. We here explore two different
schemes to encode sensor events into either a vector or
two-dimensional matrix. Furthermore, three different feature
representations are given for the vector form. Afterwards,
we evaluate their combinations with deep learning models
and also study the sensitivity of shallow models to different
feature encodings. In addition, most studies only consider the
activities of interest and ignore the NULL class in training
activity recognizers. However, it is inapplicable to real-world
applications, since the NULL class is inherently accompanied
with human behavior. Accordingly, we conduct a comparative
study on the influence of NULL class to an activity recognizer
with an aim to enlighten relevant studies to consider it in
developing a practical activity recognition system.

1. ACTIVITY RECOGNITION WITH ENVIRONMENT
SENSORS
In-home activity recognition aims to automate the recog-
nition of activities of daily living using a sensing system
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equipped with simple state-change environment sensors.
It mainly includes three stages to return an activity recognizer.
First, the streaming sensor events are transmitted to a central
processing platform through a wireless network and the data is
divided into segments through the sliding window techniques.
Second, we encode the streaming events, return feature vectors
for each segment, and optimize an activity recognizer. Finally,
we use the trained model to infer the activity label of a stream
of sensor events. In the training stage, we need to collect sen-
sor data and annotate them with corresponding activity labels.
Afterwards, we extract features from the segment to optimize
a classifier. Considering that how to encode the sensor events
largely determines the performance of an activity recognizer,
we explore different schemes to encode the multichannel
streaming sensor events and use deep learning techniques to
jointly optimize the feature learning and classifier training
towards better learning complex relationships among data.
After obtaining an activity recognizer, we use it to predict
the activity label of unseen sensor events.

A. Encoding Streaming Sensor Events

Due to the inherent complexity of human behavior, inferring
on-going activities according to the sensor readings of a single
time point is quite difficult and one feasible way is to segment
the time-series data into chunks. In processing streaming
data, sliding-window techniques have been commonly used
and three specific methods are available for use: explicit
segmentation, sensor event-based windowing, and time-based
windowing [23]. For explicit segmentation, it perfectly relates
an activity to corresponding sensor events and can get an
activity recognizer that works well on the pre-segmented
sequences. However, such a method is inappropriate to real-
world applications, because it is difficult to determine the
occurrence of a performed activity without human supervi-
sion. In contrast, time-based windowing method divides the
sequence into time intervals of equal size. Compared with
the pre-segmentation scheme, it provides a practical solution
and has been commonly used in handling time-series data.
Similarly, sensor event-based windowing method divides a
sensor event sequence into chunks of equal number of events.
Since different activities probably trigger a set of different
sensors at different times and in different places, it can
generate chunks of different durations. Particularly, both time-
based and sensor event-based windowing methods require
users to specify the window size. A small-size window would
fail to contain discriminant information of an activity, while a
large-size window may involve the sensor readings of multiple
activities. In addition, according to whether the window size is
fixed, sliding window techniques are further divided into two
schemes: fixed length and variable length.

In this study, we use the time-based sliding window with a
fixed size to analyze the time-series sensor events and prepare
them for subsequent classification models. Fig. 1 presents an
illustrative example on applying a sliding window of size k
to the multichannel streaming sensor events, where a window
shifts over time with a user-defined time step and the hori-
zontal axis means different sensors. Obviously, the returned
segment forms a two-dimensional (2D) matrix, with columns
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Fig. 1. lllustration of how to code the multichannel streaming binary
sensor events. A sliding window of size k shifts over the time to get
segments, from which we obtain the 2D and 1D feature encodings.

indicating different environment sensors and rows denoting
time steps. Its element takes a value of 1 if corresponding
sensor is triggered at that time slot; otherwise, 0. We further
aggregate the segment to form a one-dimensional (1D) vector
with length N, where N is the number of sensors deployed
in a smart home. For the vector form, we investigate three
different ways to code the segment: binary representation,
numeral representation, and probability representation. The
numerical representation counts the number of firings of a
sensor in a segment, probability representation denotes the
ratio of firings of a sensor, and binary representation shows
whether a sensor reported an event. For the case in Fig. I,
given five sensors and a window of depth five, if the first sensor
fired three times, the third sensor was not triggered, and the
rest sensors all fired twice in the time slice, feature vectors of
the three representations are X, = (1, 1,0, 1, 1), X, = (3, 2,
0,2,2),and X, = (3/9, 2/9, 0, 2/9, 2/9), respectively. After
detailing how to encode the multichannel streaming events,
we show how to combine them with deep learning models.

B. Autoencoder

An autoencoder, typically consists of one input layer, at least
one hidden layer, and one output layer, aims to reconstruct its
input in the output layer with minimal errors. Specifically,
for a N-dimensional x = (x1, x2,...,xy), an autoencoder
first encodes it into a M-dimensional latent vector 7 = (hj,
ha, ..., hy) using (1),

h(x) = fF(WDx 4+ pD)y, (1)

where W) € RV*M g the weight matrix between the input
and hidden layers, bW stores the biases of &, and f denotes
an activation function. We reconstruct x from i (x) using (2)
with an objective of minimizing the difference between x and
Xest-

Xest = FIWPh(x) + @), 2)

where W e RM*N s the weight matrix between the output
layer and hidden layer and 5 stores the biases.
Furthermore, previous studies show that a deep architecture
helps discover the highly non-linear relationships among data.
A stacked autoencoder (SAE) takes an autoencoder as the
building block and is trained using the greedy layer-wise
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Fig. 2. SAE-based activity recognition model with environment sensors.

learning. Given a stacked autoencoder with n layers, for the p-
th autoencoder (1 < p < n), we perform (3) and (4) iteratively,

a?) = f(z(”)) 3)
2Py = ww (@) 4 pP) 4)

where z(” is the input of the p-th layer, a'P is its activation,
and a¥ = x when p = 1. Finally, we stack a fully connected
layer and a classification layer on top of the SAE and fine-
tune the network parameters [18]. Fig. 2 presents SAE-based
activity recognition model.

C. Deep Belief Network

Similar to SAE, deep belief network (DBN) is a stack model
with restricted Boltzman machines (RBM), where the hidden
layer of each previous sub-network is the visible units of
subsequent layer [18]. An RBM is a generative energy-based
model that consists of a visible layer and a hidden layer and
it is trained by contrastive divergence. For a N-dimensional
visible vector v = (v1, v2,...,0xN), RBM updates the hidden
units with the visible units based on (5),

p(hj = 1|V) = sigmod (D viwij + b)), )
i

then updates the visible units with the hidden units using (6),

pj = 1H) = sigmod(>_ hjwij + a). (6)
J
where a and b are the biases of the visible layer and hidden
layer, respectively. RBM re-updates the hidden layer with the
reconstructed visible layer and updates the weights W.

After training an RBM, we stack another RBM on top of
it and take the hidden layer as the visible layer of next RBM.
A greedy layer-wise scheme is used to train a DBN. Finally,
we stack a fully connected layer and a classification layer on
top of the DBN and fine-tune the network parameters on the
basis of the pretrained network. That is, DBN has a structure
similar to SAE, except the RBM building block.

D. Convolutional Neural Network

Convolutional neural network (CNN) generally comprises
an input layer, at least one convolution and pooling layer, and
at least one fully-connected layer [28]. Compared with SAE

P chom It
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Fig. 3. CNN-based activity recognition model with binary environment
sensors. It can take as input either the 1D vector (shown in the upper left
part) or 2D matrix (shown in the lower left part).

and DBN, CNN, having the characteristics of weight sharing
and translation invariance, can better capture the local depen-
dencies in lower layers and salient patterns in higher layers.
Since each layer typically contains a number of convolution
operators. This enables CNN to get multiple salient patterns
that are learned from different views. Specifically, given the
previous layer of CNN, we use (7) to obtain the feature map
of the next layer.

F Ky

=o(+ D D KL kdyx =0, (D)

i=1 k=1

a§l+1)(r)

where alf (r) means the feature map j of layer /, F; denotes
the number of feature maps of layer [, K j ; is the kernel that
is used to get the feature map j of layer (I 4+ 1), K, is the
kernel width, and ¢ is an activation function. Finally, we stack
a fully-connected layer and a classification layer to train
an activity recognition model. Significantly, the convolution
kernel depends on the input dimensionality. Herein, we explore
both 1D vector and 2D matrix feature encodings, where we
apply a 1D convolutional kernel on the 1D input and 2D
kernel on the 2D input. Fig. 3 presents the corresponding CNN
architectures.

E. Long-Short Term Memory Network

Time-series data generally contain temporal information to
reflect the dependencies, and long-short term memory (LSTM)
network is designed to make use of such information. LSTM
uses the gating mechanism to learn the temporal dynamics
and updates the cell state using input gate, output gate, and
forget gate. Specifically, given a temporal input sequence X =
(X1, ..., Xr), it performs the following steps to calculate the
hidden state h; (1 <t <T),

ir = o;(Wyixs + Wiihi—1 + Weiei1 + by) (8)
fi = or(Wyrxy + Wishy 1 + Weper 1 +by) )

c; =fr s ey +ir ko (WeeXs + Wichi—1 +be)  (10)
0y = ao(onxt + Whohi—1 + Weoei—1 + bo) (11
h; = o; x o, (c;), (12)

where i, o, f, and ¢ represent the input gate, output gate,
forget gate, and cell activation, respectively, ¢ denotes an
activation function, x; denotes input at time ¢, W are the
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Fig. 4. LSTM-based activity recognition models. The upper part presents
the LSTM for 1D input and the lower part corresponds to 2D case.

associated weight matrices, and b indicates the bias vector.
We present two LSTM networks corresponding to different
feature encodings, shown in Fig. 4, where the upper part
illustrates how to customize the LSTM for 1D feature space
and the lower part corresponds to 2D feature space. Their
major difference is their input. For 1D representation, its input
X; is a scalar and the sequence length equals the number of
sensors, while the sequence length equals the width of sliding
window and its input X, is a N-dimensional vector for 2D
representation.

V. EXPERIMENTAL SETTING AND RESULTS
A. Sensing Network

To evaluate different original feature encoding schemes and
their combinations with deep learning models, we conduct
comparative experiments on three smart home datasets that are
collected with binary environment sensors [13]. Specifically,
to automate the recognition of ADLs, different types of sensors
are attached to or embedded into ambient objects in homes:
pressure mats to measure lying in bed or sitting on a chair, pas-
sive infrared to detect motion in a specific area, float sensors
to measure the use of the toilet, mercury contacts to detect the
movement of objects, and reed switches to indicate the status
of door or cupboard open-close. A sensor network consisting
of a collection of these sensors observes and records the
behavior of the residents. The network works with an energy-
saving protocol and a 4.8kb/s data transmission rate, which
is enough for long-term data collection, and it also has great
scalability in dynamically adding or removing sensing units.
Besides, the sensor network is easily deployed using some
tape at low cost and less intrusive to residents compared with
wearable devices because sensors are mounted on or embedded
into objects. If the state of an object changes, the associated
sensors generate binary outputs and send them wirelessly
to remote servers for further analysis. Afterwards, sensor
events are collected from the smart homes and annotated with
corresponding activities via online and/or offline annotation
methods (e.g., time diary, audio recordings, experience sam-
pling, and self-recall) when an individual performs activities
inside the home. A Bluetooth headset is used to annotate the
start and end time of activities. Moreover, the same clock is

TABLE |
DESCRIPTION OF THE THREE SMART HOME DATASETS

Smart home SH-a SH-b SH-c
#resident 1 1 1
resident age 26 28 57
#rooms 3 2 6
#days monitored 25 14 19
#sensors 14 23 21
#activities 10 13 16
#sensor events 1229 19,075 22,700
#activity instances 292 200 344

used to timestamp sensor events towards well-synchronized
measurements.

B. Experimental Data

Since it is difficult, if not impossible, to consider all activ-
ities due to the complexity of human behavior and the level
in defining an activity (e.g., unit-level action and composite
activity), in this study, the activities of interest are chosen
based on the Katz ADL index that assesses the elderly physical
and cognitive capabilities and they are a subset of both basic
ADLSs and instrumental ADLs. Basic ADLs are mainly related
to self-care tasks in maintaining one’s fundamental function-
ing, and the instrumental ADLs include the activities that
enables one to live independently in a community. The first
smart home (SH-a) installed with fourteen sensors has three
rooms and houses an independent living resident. SH-a collects
sensor data for twenty-five days, resulting in 292 activity
instances and 1229 sensor events. Besides, we include NULL
class, which refers to times at which no human activity is
annotated. It may contain background data and activities that
are considered by an application. The second smart home
(SH-b) is an apartment and twenty-three sensors are deployed
in different places such as the kitchen, bathroom, bedroom,
dining room, and living room. During the data collection
stage, a volunteer stays inside it for two weeks. The SH-b
dataset has 200 activity instances. In the experiment, sensor
data associated with twelve predefined activities are annotated.
Different from SH-a and SH-b, the third smart home (SH-c) is
a house with two floors and installed with twenty-one sensors.
Experimental data are continually collected for nineteen days
when a senior person stays independently in the house, and
sixteen ADLs are considered. This makes the recognition task
much more challenging than that of SH-a and SH-b. Table |
presents the description of the three smart homes, and readers
can refer to [13] for details about experimental protocols,
sensor types, and data annotation.

C. Experimental Setup

As for the feature encoding, we herein apply a time-based
sliding window to divide time-series sensor data into segments.
According to previous studies, a window size of suggested 60
seconds is used to shift over the multichannel streaming sensor
data [7], [30]. Particularly, as detailed previously, we present
two different original feature encodings (i.e., 1D vector and
2D matrix) and give three specific forms for 1D vector (i.e.,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 19,2021 at 00:26:08 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: ADL RECOGNITION WITH BINARY ENVIRONMENT SENSORS USING DEEP LEARNING

5429

(1) Collecting | (2) Feature Encoding (3) Feature learning
semsorevents | _______, & model optimization,
. (i) 2D matrix: B
i Xp=
smarthome . Pegel
with spnsors < < | F>
: o S e predictsd
' streaming * (i1) 1D vector: ADLs
‘sensordata . X=
...... Wssiouss ' binar\'al :
' ' NUIET; Ul
i TestData i-===>:  lprobabilty

Fig. 5. The proposed in-home activity recognition model.

binary, numeral, and probability representations). Afterwards,
we feed the encoded features to classification models to train
an activity recognizer. To evaluate the power of a classifier,
we use the leave one day out cross validation, where one full
day of sensor data is used as the test set and data from the
remaining days are used to train a classifier. We repeat the
above process the total number of days times such that each
day will be the test set and we report the average classification
accuracy. Fig. 5 illustrates the experimental setup that consists
of the training stage shown by the black solid line and the
test stage indicated by the red dashed line. In the training
stage, we collect the sensor events and optimize an activity
recognizer, which we use to predict the activity labels of the
test data.

As for the choice of classification models, we explore four
commonly used deep learning models (SAE, DBN, CNN, and
LSTM) and comparatively evaluate their responses to different
feature encodings. Specifically, we build a three-layer stacked
autoencoder and consider different number of units in a hidden
layer (i.e., M = 8, 16, or 32). We stack a Softmax layer
(Sm) on top of SAE, and the number of hidden units of
Sm equals the number of activities of interest. To optimize
the parameters of SAE, we use a greedy layer-wise way to
train it with conjugate gradient descent (CG) and do fine-
tuning in an up-bottom way. For DBN, we also explore a
three-layer architecture towards a relatively fair comparison
to SAE. We use the pretrain strategy to build DBN, stack a
Softmax layer, and fine-tune it using the available labeled data.
We consider different number of units in a hidden layer, i.e., 8,
16, and 32. Since SAE and DBN typically work with vectors,
their input takes a 1D vector and both have three different
encodings. For CNN, it has the scale invariance and local
dependency and potentially learns hierarchical representations
from raw sensor data. Inspired by the structure of LeNet-5,
we use three convolution layers, followed by a fully connected
layer with a 0.5 dropout rate and a Softmax layer. Particularly,
we consider two specific CNNs: 1D CNN and 2D CNN.
The former works on 1D vector sequences and utilizes 1D
convolution kernel to learn local features, while the latter
takes as input 2D sequences and uses 2D convolution kernel
to learn high-level features. We use the rectified linear unit
(ReLU) activation function in convolution layers and set the
number of hidden units of the fully connected layers to be the
number of predefined activities. We consider different number

TABLE Il
EXPERIMENTAL SETUP

Model Architecture Parameter and values
degree of sparsity: 0.15, weight regularization:
SAE  A-A-A-FC-Sm 0.004, activation: Sigm, optimizer: CG
DBN  R-R-R-FC-Sm activation: Sigm, optimizer: Adam (0.001)
dropout: 0.5, kernel: 1*2/1*3, activation: ReLU,
CNNId - C-C-C-FC-Sm 1 iimizer: Adam (0.001)
dropout: 0.5, kernel: 2*2/3*3, activation: ReLU,
CNN C-C-CFCSm o imizer: Adam (0.001)
LSTMI1d L-L-FC-Sm activation: Tanh, optimizer: Adam (0.001)

dropout: 0.5, activation: Tanh, optimizer: Adam

LSTM  L-L-FC-Sm (0.001)

of feature maps in a hidden layer (i.e., 8, 16, and 32) and
explore different kernel sizes. The evaluated kernel sizes are
2 and 3. Besides, the two CNNs are optimized by the stochastic
gradient descent with momentum and a learning rate of 0.001
(Adam). For LSTM, according to the empirical studies of [19]
suggesting that a two-layer LSTM performs better, we include
two-layer LSTM networks and stack a fully connected layer
and a Softmax layer. We here present two specific LSTMs: 1D
LSTM and 2D LSTM. The former works on 1D sequences
and its time step is one, while the latter takes as input 2D
sequences and its time step is the observation over time.
The activation function of LSTM is the hyperbolic tangent
function. We also consider different number of hidden units
of a LSTM layer, and the candidate values are 8, 16, and 32.
For 2D LSTM, dropout is used in the first two hidden layers
with a 0.5 probability. Both LSTMs are optimized using Adam
with a 0.001 learning rate. Table II presents the experimental
setup, where A indicates an autoencoder, R means an RBM,
C denotes a convolutional layer, L refers to a LSTM layer, FC
denotes a fully connected layer, and Sm is the Softmax layer.
The size of input vector depends on the feature encodings, and
Sm has the same number of nodes as the number of predefined
activities.

In addition, we include other seven commonly used models
with shallow structures, including naive Bayes (NB), hidden
Markov model (HMM), hidden semi-Markov model (HSMM),
k-nearest-neighbor (KNN), support vector machine with linear
kernel (SVM), multilayer perception (MLP), and decision tree
(C4.5), to not only compare them with deep learning based
activity recognizers, but also to evaluate their sensitivity to
different feature representations. For shallow models, we take
as input the 1D original features. Default parameter values are
used for SVM and the nearest neighbor is used to predict the
labels of unseen samples in KNN.

D. Experimental Results Without NULL Class

We first conduct experiments in the situation where only
predefined activities are considered. As for the choice of fea-
ture encodings, besides CNN and LSTM that handle both 1D
and 2D features, the rest use 1D input. Tables III-V presents
the results on the three datasets, respectively. The first column
“Feature” denotes the different feature representations: binary
(Binary), numeral (Numeral), and probability representations
(Probability). As 2D representation consists of binary values,
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TABLE IlI
EXPERIMENTAL RESULTS ON HOUSE A WITHOUT NULL CLASS

Feature NB HMM  HSMM INN SVM MLP C4.5 SAE DBN CNNI1d CNN LSTMId LSTM
Binary 86.53 61.99 67.51 3792 93.69 93.67 93.71 90.43 94.13 94.51 93.49 93.40 93.32
Numeral 86.34 61.71 73.38 38.30 9374 9428 93.90 88.28 62.03 94.83 - 93.92 -
Probability  83.36 43.51 59.80 3828 8546 9337 93.72 60.46 61.44 93.60 - 92.98 -
TABLE IV
EXPERIMENTAL RESULTS ON HOUSE B WITHOUT NULL CLASS
Feature NB HMM HSMM INN SVM MLP C4.5 SAE DBN CNNId CNN LSTMId LSTM
Binary 89.17 62.24 65.53 6490 81.45 85.49 81.70 96.31 88.54 95.43 87.51 91.15 87.97
Numeral 88.44 71.41 71.54 71.35 86.31 96.59 84.33 82.45 64.80 96.60 - 94.73 -
Probability 68.62 89.05 89.05 70.98  92.53 96.25  80.38 63.30 61.95 94.99 - 63.44 -
TABLE V
EXPERIMENTAL RESULTS ON HOUSE C WITHOUT NULL CLASS
Feature NB HMM HSMM INN SVM MLP C4.5 SAE DBN CNNId CNN LSTMId LSTM
Binary 49.17 24.79 27.00 2691 54.21 39.53 34.21 53.29 57.96 57.88 44.70 53.29 53.72
Numeral 47.35 27.04 38.53 33.06 52.88 52.91 40.91 60.45 53.72 61.55 - 58.73 -
Probability 49.88 34.53 40.03 34.03 61.18 48.16 43.21 53.04 48.22 56.58 - 53.04 -
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Fig. 7. Performance comparison between with and without NULL class on SH-b.

we categorize its results into Binary. CNN1d and LSTM1d
denote results with 1D input, and CNN and LSTM shows the
results with 2D input. The best result on each representation is
shown in bold and the best result on each dataset is underlined.

From Table III, we observe that one classifier, even the
deep learning model, generally obtains different performance
across original feature encodings. For example, NB achieves

accuracy of 86.53%, 86.34%, and 83.36% with the three
representations, respectively. DBN gets 94.13% accuracy with
the binary representation and 61.44% accuracy with the prob-
ability representation. SAE achieves accuracy of 90.43%,
88.28%, and 60.46% with binary, numeral, and probability
representations, respectively. We see CNN1d and LSTM1d
obtain relatively stable results compared with DBN and SAE.
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TABLE VI
EXPERIMENTAL RESULTS ON HOUSE A WITH NULL CLASS
Feature NB HMM  HSMM INN SVM MLP C4.5 SAE DBN CNNI1d CNN LSTMId LSTM
Binary 76.90  58.13 58.39 32.78 83.70 85.05 85.16 63.65 84.87 85.30 85.23 84.85 84.88
Numeral 77.03  59.73 60.10 3330 8395 84.12 85.59 63.35 54.65 85.79 - 85.13 -
Probability ~ 73.03  41.77 41.77 3329 76.56  85.06 85.49 54.28 53.35 84.88 - 84.80 -
TABLE VI
EXPERIMENTAL RESULTS ON HOUSE B WITH NULL CLASS
Feature NB HMM HSMM INN SVM MLP C4.5 SAE DBN CNNI1d CNN LSTMId LSTM
Binary 80.88 60.49 63.22 53.84 7840  78.62 76.46 80.15 82.09 88.25 80.88 80.89 83.85
Numeral 80.50 66.79 69.42 59.03 81.82 88.15 81.02 75.68 60.94 91.54 - 85.73 -
Probability 64.22 82.64 82.64 5829  86.22 85.04  72.49 59.60 59.76 85.97 - 66.83 -
TABLE VIII
EXPERIMENTAL RESULTS ON HOUSE C WITH NULL CLASS
Feature NB HMM HSMM INN SVM MLP C4.5 SAE DBN CNNI1d CNN LSTMId LSTM
Binary 40.70 24.84 29.55 25.78 40.44 36.97 33.34 45.16 47.74 45.10 42.36 43.71 40.24
Numeral 41.44 27.37 3231 30.82 42.70 45.29 37.68 44.57 47.07 48.68 - 47.38 -
Probability 10.54 10.12 11.09 25.99 16.46 15.48 24.97 43.81 44.51 46.04 - 43.81 -

For example, CNN1d obtains the accuracy of 94.51%, 94.83%,
and 92.98% compared to the 94.14%, 62.03%, and 61.44%
of DBN and the 90.43%, 88.28%, and 60.46% of SAE. In
addition, we observe that CNN1d achieves the best results
and generally outperforms CNN, LSTM1d and LSTM. This
indicates the existence of non-linear relationships among orig-
inal features and the power of CNN in learning complex
features. This is probably because the 2D feature encod-
ing leads to sparse input that makes it difficult to extract
meaningful information and the temporal relations that can
be used by LSTM1d is limited. Furthermore, except DBN,
we observe that using the numeral representation generally
obtains better performance or comparable results to the binary
and probability representations in the majority of cases. For
example, NB obtains accuracy of 86.53% for the numeral
representation, comparable to the 86.53% accuracy of binary
representation and the 83.36% accuracy of probability rep-
resentation. LSTM1d achieves accuracy of 93.90% for the
numeral representation, which is slightly better than other two.
The possible reason is that the binary representation suffers
from loss of information and the probability representation has

difficulty in parameter updating with different batches of the
training data. Thus, compared with the numeral representation,
the binary representation has difficulty in recognizing activities
that trigger the same group of sensors and the probability
representation leads to suboptimal solutions. Similar results
can be observed from Tables IV and V.

E. Experimental Results With NULL Class

It seems that we obtained satisfactory activity recogni-
tion performance according to the above results, but this
presents the ideal case where one only performs the predefined
activities of interest. Unfortunately, it is inapplicable to the
real-world applications, since the NULL class is inherently
accompanied with human behavior and it is not trivial to
filter out the NULL class. For example, 12.69% samples
of the first smart home are associated with NULL class,
and the numbers are 7.96% and 19.97% on the second
and third smart homes, respectively. Herein, we consider the
NULL class and comparatively evaluate it. Tables VI-VIII
show the corresponding results. From the results, we observe
that original feature encodings influence the performance of
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an activity recognizer. For example, on the second dataset,
when using NB, the three representations obtain the accuracy
of 80.88%, 80.50% and 64.22%, respectively. On the third
dataset, LSTM1d obtains the accuracy of 43.71%, 47.38%,
and 43.81% with the three feature representations, respectively.
We also observe CNNI1d tends to obtain better results and
outperforms CNN, LSTM1d, and LSTM. Besides, we observe
that a majority of activity recognizers except DBN benefit from
the numeral representation. For example, on the third smart
home, when we use the numeral representation, CNN1d gets
accuracy of 48.68%, which is higher than the other two cases
(45.10% and 46.04%), and LSTM 1d obtains the best accuracy
of 47.38%. This indicates the discriminant ability of the use
of numeral representation.

Furthermore, when comparing the results of without NULL
class (Tables I1I-V) and with NULL class (Tables VI-VIII),
we observe that the inclusion of NULL class generally lowers
the recognition accuracy of an activity recognizer. For exam-
ple, on the first dataset, NB obtains the accuracy of 86.53%,
86.34%, and 83.36% for the three representations, respectively,
but they reduce to 76.90%, 77.03%, and 73.03% when the
NULL class is considered. For CNN1d, the accuracy reduces
to 85.30%, 85.79%, and 84.88% from 94.51%, 94.83%, and
93.60%, respectively. To present a better comparison, Figs. 6-
8 show the results of the three different feature encodings
on the datasets. We observe that the inclusion of NULL class
deteriorates the performance of both deep learning and shallow
models. It is mainly because it becomes difficult to recognize
the increased number of classes and the newly added class
probably share similar characteristics to existing classes such
as the transition between two activities. Similar results can be
obtained for the case of binary and probability representations.

Overall, according to the above results, we conclude that
the choice of feature encodings largely determines the per-
formance of a model and that the numerical representation
generally leads to better performance. Although deep learn-
ing models can learn features from the raw signals, they
have different discriminant capabilities and are applicable to
different problems. Due to the sparsity of the multichannel
sensor events, using a 1D vector to encode sensor data remains
a priority. In addition, results show that the inclusion of NULL
class lowers the recognition accuracy, which indicates that
we should stress its existence in designing practical activity
recognition supported applications.

V. CONCLUSION

Automatically recognizing activities of daily living bridges
the gap between the low-level sensor data and high-level appli-
cations and plays a key role in human-centric applications,
especially the ambient assisted living systems. Environment
sensor-based methods have advantages of non-intrusiveness
and low cost and they provide a promising way for unobtrusive
activity recognition. Since human activities are characterized
by inherent complexity, how to accurately recognize ADLs is
meaningful yet challenging. Although deep learning models
have the end-to-end capability to learn features and provide
enhanced performance in numerous fields, there are several
issues that need further investigation when applying them to

build in-home activity recognizers with environment sensors.
In this study, we explore how to encode the multichannel
streaming binary sensor events and evaluate their combinations
with deep learning models, where we propose two different
methods to process sensor data. Comparative experiments are
conducted on public smart home datasets collected with binary
sensors. Besides, we include other seven shallow classification
models as a comparison. Experimental results indicate that
different feature encodings influence both deep learning and
shallow models and show the superiority of deep learning.
Furthermore, we experimentally evaluate the influence of
NULL class on an activity recognizer, which shows that its
inclusion deteriorates the performance of deep learning and
shallow models. This motivates researchers, to a certain extent,
to consider the NULL class in developing and evaluating
activity recognition enabled systems with environment sensors
and even wearable sensors or cameras.

Although this study performs offline evaluation, both online
and offline activity recognition involves the optimization of
an activity recognizer. This study provides an objective metric
for evaluating activity recognizers as most previous studies
have done. Also, there are many applications such as long-
term behavior pattern mining and daily health evaluation that
have tolerance to time-delay. For the future work, we plan
to conduct researches along with the following lines. First,
as for the applicability of deep learning models to smart home
scenarios, we can provide the activity recognition service via
the locally deployed high-performance servers or a public
cloud platform. Particularly, along with the development of
edge computing, we could implement the activity recognition
engine inside edge devices to better support edge intelligence.
Second, due to the impact of NULL class, how to discover
and recognize new activities from the NULL class in a
specific application is of much value in improving an activity
recognizer, which remains another research topic. Particularly,
we can combine activity discovery with activity recognition,
where the former detects emerging activities to help the latter
better adapt to a dynamic environment.
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