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Compared with linear causality, nonlinear cau‐
sality has more complex characteristics and content.
In this paper, we discuss certain issues related to
nonlinear causality with an emphasis on the concept
of causality field. Based on widely used computation
models and methods, we present some viewpoints
and opinions on the analysis and computation of non‐
linear causality and the identification problem of cau‐
sality fields. We also reveal the importance and prac‐
tical significance of nonlinear causality in handling
complex causal inference problems via several specific
examples.

1 Introduction

According to the three-level causal hierarchy
proposed by Judea Pearl, having the knowledge of
causality rather than correlation endows us with the
ability to better answer the critical questions related
not only to association, but also intervention and counter‐
factuals (Pearl, 2019). In principle, causality studies the

cause–effect relationship, and thus helps reveal the
data generation procedure. However, statistical corre‐
lation does not necessarily indicate causation. For
example, a positive correlation between yellow fingers
and cough is falsely generated by smoking. In this case,
smoking is the common cause (i.e., confounder) of
both yellow fingers and cough, and we cannot say that
yellow fingers causally lead to cough. The Simpson
paradox, in which uncontrolled and even unobserved
variables could reverse or eliminate an association be‐
tween two variables, is a typical phenomenon in prob‐
ability and statistics. For example, the COVID-19 case
fatality rate in Italy is higher than that in China overall,
but for age groups, the case fatality rates in Italy are
lower than those in China (von Kügelgen et al., 2021).
One strategy to treat this phenomenon is to use causality.
In addition, causal inference contributes to the devel‐
opment of machine learning in better solving open
problems (e.g., explainability, robustness, adaptability,
and transfer learning) and further paves the way for
next-generation artificial intelligence with the abili‐
ties such as reflection and reusable mechanisms (Yue
et al., 2020; Schölkopf et al., 2021). Therefore, un‐
derstanding and analyzing cause–effect relationships
is of great value and of primary interest in a variety
of fields, e.g., economics, education, genomics, epide‐
miology, and medical science (Stavroglou et al., 2019).

Although significant progress has been achieved
in causal inference, to our knowledge, most of exist‐
ing studies deal with linear causal inference, while

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding authors
* Project supported by the National Major Science and Technology
Projects of China (No. 2018AAA0100703), the National Natural Science
Foundation of China (No. 61977012), the China Scholarship Council
(No. 201906995003), and the Fundamental Research Funds for the
Central Universities, China (No. 2021CDJYGRH011)

ORCID: Aiguo WANG, https://orcid. org/0000-0001-6150-8068;
Li LIU, https://orcid.org/0000-0002-4776-5292
© Zhejiang University Press 2022

Correspondence:

1277



Wang et al. / Front Inform Technol Electron Eng 2022 23(8):1277-1286

little attention has been devoted to nonlinear causal
inference (Guo et al., 2021; Yao et al., 2021). To this
end, we present some viewpoints and opinions on
nonlinear causal inference, including its definition,
characteristics, and its differences to linear causal
inference, especially the causality field problem.

2 Causality fields

We first present related notations before illus‐
trating the nonlinear causal effect. Suppose that D is
a set of data points and u∈D is defined by

u = ( )x1 x2 ⋯ xn

a1 a2 ⋯ an

, (1)

where xi (i=1, 2, …, n) denotes the ith variable (feature)
and ai indicates its corresponding value. Specifically,
ai can be binary, multi-valued, or continuous, and
u=(a1, a2, …, an) when there is no ambiguity. Although
the binary case of ai is the simplest and perhaps
the most commonly used one in practice, we are
often required to handle multi-valued, discrete, and
even continuous values in the nonlinear causality
problem.

Given the cause variable X, effect variable Y,
variable Z that influences X and Y (often called the
covariable in the potential outcome framework, or the
backdoor variable in the causal structural model), and
exogenous variable U, we can obtain Eq. (2), known
as the structural causal equation (SCE), via the data-
fitting or regression methods (Rubin, 2005; Pearl,
2009).

Y = f ( X, Z, U ). (2)

The average causal effect (ACE) for discrete
variables is denoted by Eq. (3):

ACE ( X→ Y )

={ }E (Y ∣do ( X = x ) ) -E (Y ∣do ( X = x′ ) ) / ( x - x′ )

= E{EZ[ f ( x, Z, U ) - f ( x′, Z, U ) ]} / ( x - x′ ).

(3)

It is known that ACE(X→Y) indicates the causal effect
of X on Y by measuring the change in Y for a one-unit
change in X. For a continuous case, it is expressed as

|ACE ( X→Y )
X=x

= lim
Δx→0

E{ }EZ [ f ( x+Δx, Z, U )-f ( x, Z, U ) ] /Δx

=E{ }EZ

∂
∂X

f ( x, Z, U ) , (4)

which essentially estimates the ACE at X=x.
Obviously, if f (X, Z, U) =aX+bZ+cU, which

is a linear equation, Eqs. (3) and (4) would return
ACE(X→Y)=a; that is, the causal effect equals the
coefficient a of X irrespective of the values of Z and
U, which is a characteristic of linear causality. However,
it raises complex issues for the nonlinear case. Then,
we present the definitions and characteristics related to
nonlinear causal analysis.
Definition 1 (Nonlinear causality) If the functional
relationship f(X, Z, U) is nonlinear, the causal relation
between X and Y is called nonlinear causality.

For nonlinear causality, the causal effect of X
on Y depends not only on X but also on Z and U, and
different values of X, Z, and U lead to different ACEs.
Consequently, this makes nonlinear causality different
from linear causality to a large extent and complicates
the nonlinear causal effect. Specifically, we can divide
the nonlinear causal effect into strong nonlinear and
quasi-linear types.

Strong nonlinear: if X appears in the derivative∂
∂X

f (X, Z, U), the causal relation is strong nonlinear.

That is, the causal effect depends on the values of X,
Z, and U, and their different values generally lead to
different causal effects.

Quasi-linear: if X does not appear in the derivative∂
∂X

f (X, Z, U), the causal relation is quasi-linear. For

this case, the causal effect is closely related to Z
and U.

This indicates that the expectation of ACE(X→Y)
in quasi-linear causality may vary only with the values
of Z and U, and that the expectation of ACE(X→Y) in
strong nonlinear causality depends also on the value
of X besides Z and U. For the purpose of explanation,
Table 1 gives an illustrative example, where X=1
indicates the treatment group (drug taker), X=0 is the
control group (drug nontaker), Y has three outcomes,
including recover (Y=1), worsen (Y=-1), and unchanged
(Y=0), and Z={1, 0} denotes daytime and night respec‐
tively. Z influences both treatment X and effect Y.
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Suppose that the results of drug test effectiveness are
as shown in Table 1. The SCE is

Y = ZX - (1 - Z ) X. (5)

This case is obviously quasi-linear. According
to Eq. (3), we can obtain

ACE ( X → Y )

= E (Y∣do ( X = 1) ) - E (Y∣do ( X = 0 ) ) = 0.

(6)
However, we have ACE∣Z=1=E(Y∣do(X=1), Z=1)−

E(Y∣do(X=0), Z=1)=1 for Z=1, and ACE∣Z=0=E(Y∣do(X
=1), Z=0)−E(Y∣do(X=0), Z=0)=−1 for Z=0. Obviously,
ACEs are different for different Z values. That is, the
causal effect of X on Y is fluctuant and related to Z,
where there is a positive effect during daytime (i.e.,
taking the drug helps recovery) and a negative effect
at night (i.e., the condition worsens upon taking the
drug). Thus, if we conclude from ACE=0 that there is
no causal effect of X on Y, it does not conform to the
facts or our common sense. This indicates that, in con‐
trast to the linear causal effect, the expectation of Z
probably counteracts the positive and negative effects
in quasi-linear causality, and subsequently yields fluc‐
tuating interdependencies of X on Y existing in the
nonlinear causal effect. This example prompts us to
consider the problem of nonlinearity in causality anal‐
ysis. Obviously, one naive solution is to calculate the
causal effects with respect to each value of Z.

To better illustrate the characteristics of non‐
linear causality, we introduce the concept of causality
field.
Definition 2 (Causality field) This consists of the
following three types of causal effect of X on Y:

Positive causality: X causes a homodromous
change in Y;

Negative causality: X causes an antagonistic
change in Y;

Null causality: X causes no change in Y.
The three fields are noted as

ì

í

î

ï

ï
ïïï
ï

ï

ï

ï

ï
ï
ïï
ï

ï

ï

Ω+ = { }( x, z, u )|
∂
∂X

f ( X, Z, U ) > 0 ,

Ω- = { }( x, z, u )|
∂
∂X

f ( X, Z, U ) < 0 ,

Ω0 = { }( x, z, u )|
∂
∂X

f ( X, Z, U ) = 0 ,

(7)

called the causality fields of X on Y.
For linear causality, the causal effect is constant

and is independent of X, Z, and U. However, the
causal effect is fluctuant for nonlinear causality, which
requires us to identify different causality fields for
solving a specific problem.

Next, we study a complex example: the typical
competitive–symbiotic relationship between two bio‐
logical populations, rabbits and foxes. Such a relation‐
ship is given by the following differential equation,
the so called Lotka–Volterra equation (Takeuchi et al.,
2006; Sugihara et al., 2012):

ì

í

î

ï
ïï
ï

ï
ïï
ï

dNR

dt
= NR( )α - βNF ,

dNF

dt
= -NF( )γ - δNR ,

(8)

where NR denotes the number of rabbits, NF denotes
the number of foxes, t denotes time, dNR /dt and dNF /dt
represent the instantaneous growth rates of rabbits
and foxes respectively, and α, β, γ, and δ are positive
real parameters.

Fig. 1 presents the illustration plot, where the
arrows denote the population trends between rabbits
and foxes. We can observe that rabbits and foxes
have competitive and symbiotic relationships. For
example, under different conditions, an increase in
the population size of rabbits can lead to the increase
in the population size of foxes (i.e., area A, ecological
mutualism model), the decrease in the population
size of foxes (i.e., area B, ecological competition
model), or the decrease in both the rabbit and the fox
population (i.e., area C, ecological total-loss model).
Obviously, the population of rabbits affects that of
foxes under a certain causality existing between them;
however, this causality fluctuates between positive and

Table 1 The effect of a drug considering the time

Time

Daytime (Z=1)

Night (Z=0)

With or without drug

With (X=1)

Without (X=0)

With (X=1)

Without (X=0)

Effect

Recover (Y=1)

Unchanged (Y=0)

Worsen (Y=-1)

Unchanged (Y=0)
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negative values, and has different patterns in different
fields. Particularly, null causality exists at the boundary
between the positive and negative regions, although
its probability measure may be zero. Therefore, the
use of ACE probably distorts the true causality and
fails to reflect the quantitative relationships between
two species. In this situation, the causality field is an
important concept to study these relations.

3 Computation for nonlinear causal relation

In this section, we discuss how to estimate non‐
linear causality and focus on how to analyze the
causality field. First, we introduce the following three
assumptions to enable causal effect estimation, which
play a crucial role in the calculation and analysis of
causal effects (Rubin, 2005):
Assumption 1 (Stable unit treatment value assump‐
tion, SUTVA) SUTVA states that the potential out‐
come of a unit (or individual) i is independent of the
treatment applied to other units, and that two units
having the same treatment value would receive the
same treatment. SUTVA basically involves no inter‐
ference and the well-defined treatment levels. It indi‐
cates that there is no difference between the assign‐
ments of the treatment group and control group; that
is, the experimental results would not change no
matter the units are assigned to the treatment or
control group. SUTVA is essentially equivalent to
the independent causal mechanism (ICM) principle,
stating that the causal generative process of variables
is composed of autonomous modules that do not
inform or influence each other.

Assumption 2 (Ignorability) The potential outcome
Z is independent of the treatment assignment X condi‐
tioned on the covariable Z, i.e., (YX=1, YX=0) ⊥X|Z,

where Y X = x=EZ (Y X = x ( z ) ). This is also called the

unconfounder assumption, since it posits the non-
existence of unobserved confounders. However, the
means to verify this is a nontrivial task. This assump‐
tion enables us to calculate the potential outcome:

P (Y X = x′∣X = x, Z = z ) = P (Y∣X = x′, Z = z ) , (9)

which transforms the counterfactual problem into the
statistical analysis of observational data. Judea Pearl
has proven that ignorability is equivalent to the back‐
door criterion (Yao et al., 2021).
Assumption 3 (Positivity) This means the choos‐
ability treatment assignment, i.e., P(X=x|Z=z)>0, ∀x, z.
This assumption makes the potential outcomes mean‐
ingful; otherwise, it is pointless to discuss and calcu‐
late P(Y|X=0, Z) if there are no data points in any
case with X=0 conditioned on Z, i.e., P(X=0|z)=0.

Furthermore, we often call ignorability and posi‐
tivity together as strong ignorability. With the above
assumptions, we can calculate the ACE. The poten‐
tial outcome framework is commonly used to infer the
causal effect with regard to the treatment–outcome
pair (X, Y|Z), where Y is the outcome of treatment X
applied to a population, and Z indicates the covari‐
able. Then, we define the treatment effect as the differ‐
ence between the outcomes of different treatments.
Specifically, we use Y X = x

z =E (Y|X=x, Z=z) to denote the

potential outcome with X=x conditioned on Z=z and
define the z-specific causal effect (SCEz) as

SCEz = E (Y X = 1
Z - Y X = 0

Z ) , (10)

where X=0 (X=1) corresponds to the control (treatment)
trial. We can also define the ACE over a population:

ACE = E (EZ(SCEz ) )
= E [ EZ(Y X = 1

Z )-EZ(Y X = 0
Z ) ]

= E [ EZ (Y∣X = 1,Z = z ) -EZ (Y∣X = 0,Z = z ) ] ,

(11)

where EZ is the expectation with respect to Z. Thus,
ACE equals the expectation of SCEz associated with Z.
Note that Z should be the set of backdoor variables.

Fig. 1 Relationship between two biological populations,
rabbits and foxes
The two species have a different number of individuals and
their interdependency changes periodically among Ω+, Ω-,
and Ω0
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Eq. (11) also embodies the causal effect Eq. (12) pro‐
posed by Judea Pearl, such as

E (EZ(Y X = x ) ) = E (Y∣do ( X = x ) ). (12)

When X, Z, and Y all take binary values, there is no
difference between linear and nonlinear causality.
However, when they are multi-valued, ACE and SCE
probably change following the values of Z, X, or both
Z and X. Specifically, it is more challenging to handle
continuous cases. According to the above discussion,
if X is multi-valued,

ACE = E [ ]EZ( )Y X = x - EZ( )Y X = x′ / ( x - x′ ), (13)

where Y X = x is the observational outcome of the pres‐
ent treatment X=x, and Y X = x' indicates the counterfac‐
tual outcome of the imagined treatment X = x'. The
ACE can then be explained as the difference between
taking X=x and X=x'. If X, Z, and Y are continuous
variables, we obtain the so-called SCE, as show in
Eq. (4).

We can observe that ACE depends on the values
of X, Z, and U, which leads to the problem of causality
field. In this situation, ACE=0 does not mean that there
is no causal effect of X on Y, since their causal effects
vary with different causality fields and the ACE could
be zero.

However, there are cases where the assumptions
do not hold. For example, the interdependency among
individuals is clear and unavoidable in the situation
of rumor dissemination in social networks, often char‐
acterized by the fact that a rumor believed by more
people usually generates more people that believe it,
which violates the STUVA assumption.

The most popular modeling paradigms might be
the causal graphical model and the causal equation
model. Machine learning can be seen as a special
case of the causal equation model, which is currently
popular among researchers. If the graph or the causal
equation is given, we can perform a Markov (causal)
factorization of the joint distribution (or the term dis‐
entangle in machine learning) (Schölkopf et al., 2021):

P ( X1, X2,…, Xn ) =∏
i = 1

n

P ( Xi∣PA i) , (14)

where PAi represents the parents of the node (vari‐
able) Xi. To learn the causal relations, current approaches
typically fall into two categories: constraint-based
approaches that use conditional independence tests to
determine direct causal relations between observed
variables, and score-based approaches that quantita‐
tively score possible explanations of the causal rela‐
tions (Spirtes and Zhang, 2016). Unfortunately, check‐
ing the Markov factorization consistency of the rela‐
tions from observations and evaluating all possible
structures become infeasible with the growth of the
modeling size, especially in the case of high-dimensional
datasets. This is mainly because it is hard to deter‐
mine the directionality between two variables that are
statistically dependent and can generate mutual infor‐
mation. Most importantly, some datasets are often
finite and not causally sufficient (i.e., unobserved com‐
mon causes exist to confound two observed variables).

Compared to the graphical model that describes
the observational distribution, SCE is more intuitive
for machine learning researchers who are more accus‐
tomed to thinking while considering estimating func‐
tions rather than probability distributions (Pearl, 2019).

Xi = fi(PA i,Ui) , (15)

where fi denotes a function and Ui represents an exog‐
enous variable. To satisfy causal sufficiency, it is
required that U1, U2, … , Un be independent according
to the common cause principle. Given a set of vari‐
ables Xi (i=1, 2, …, n), if i<j, without loss of gener‐
ality, Xj ∉ PA i, which means Xj will not be on the
right side of the equation of Xi. If Z is the covariable,
and the cause variable X and effect variable Y are
determined, then X and Z must be the ancestor nodes
of Y. Accordingly, we can derive Y=f(X, Z, U) by
combining the associated equations and solve it
by applying machine learning models or fitting a
model to the raw data. However, we need to know
the parent nodes of X and Y to obtain the fitting equa‐
tion. We should select Z and U that influence X and
Y but exclude the variables that are influenced by
X or Y according to the associations in the dataset.
This is the key step to derive the fitting equations.
Although there are methods currently available, their
performance is still unsatisfactory. Typically, for
machine learning methods, assumptions on function
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classes should be given due to the arbitrarily slow
convergence. An open research question in the frontier
of machine learning is how to derive a model of non‐
linear causal relations for a large number of variables,
under which the causal inference framework can best
exploit the power of machine learning technology.
Moreover, additional challenges exist in the era of big
data in learning causal relations from high-dimensional
data and large-scale mixed data. Recently, a series of
causal inference algorithms have been proposed to
handle these challenges by employing advanced ma‐
chine learning technologies, such as deep learning
networks, to identify nonlinear relations. Score-based
methods use a scoring function to measure the quality
of fitting a causal graph to the data, and a lower score
indicates the existence of incorrect conditional inde‐
pendence. These methods consist of two components:
structural equation and scoring function, where the
former generally uses a parameter θ to decide whether
or not one fitting equation is adopted, and the latter
can translate a candidate causal graph into a parameter‐
ized score of the structural equation. Propensity score
analysis is another commonly used method that aims
to create a scoring function e(x) ∈R. This method strati‐
fies the data according to the values of e(x) and obtains
a balanced matching for covariate distribution in the
same stratum, as long as X⊥Z|e(z). Thus, the propen‐

sity score method projects the n-dimensional data
into a reduced dimension, which greatly reduces the
computational cost. One disadvantage of this method
is that it requires prior knowledge to design the scor‐
ing function. Note that causal models, either the causal
graph or SCE, can explicitly model interventions and
generalize under certain distribution shifts in the light
of the ICM principle, and thus can recognize the cau‐
sality field by computing.

To learn the causal effects from a nonlinear model,
there are two types of methods with respect to data
observation. If the values of all the variables X, Y, Z,
and U are observable, the approaches such as regres‐
sion adjustment, propensity score, covariate balanc‐
ing, and machine learning based models can be lever‐
aged to learn the casual effect. On the other hand,
when there are unobserved variables or confounders,
we can calculate the estimated casual effects by adopt‐
ing other special variables, such as the instrumental
variable (IV), mediator, and running variable, or using

tools such as the front-door criterion, to avoid the
collection of useless unobserved variables.

In the nonlinear causal model, there are some
other assumptions for relaxing the complexity of
causal effect computation. One common assumption
is that Z and X are independent if Z is unobservable,
and Y is dependent on Z (usually called unobserved
heterogeneity). Another assumption, monotonicity,
expresses that a change from X=false to X=true cannot
make Y change from true to false under any circum‐
stance. In this regard, we refer interested readers to
an excellent book (Wooldridge, 2010) that summarizes
a series of approaches for learning causal effects from
different observable situations of data under various
assumptions.

Another interesting topic is causal representa‐
tion learning in machine learning. Since real-world
observations, such as objects in an image that are
usually not structured into the units or variables that
can be directly described as a function, such func‐
tions should be learned from the high-dimensional
and low-level data (e.g., pixels). Accordingly, Schölkopf
et al. (2021) discussed three issues of modern ma‐
chine learning, including disentangled representation
learning, transferable mechanism learning, and inter‐
ventional model learning and reasoning. The first
one has been widely studied in machine learning,
aiming to learn a latent disentangled representation
W={w1, w2, … , wk} (k≪n) from the observation data
by a feature transformation function g:

g: { x1, x2,…, xn }→ { w1, w2,…, wk }, (16)

where {x1, x2, …, xn} represents the original features.
The g function can be modeled using neural networks
(e.g., the encoder–decoder framework). Unlike the
disentanglement approach, the latter two approaches
are currently in their infancy but are essential in ma‐
chine learning. Since the size of training data in each
domain is limited and large-scale manual labeling is
burdensome, it is not surprising that future artificial
intelligence models possess the capacity of reusing
the fundamental modules or structural knowledge across
domains. This coincides with the ICM principle. There‐
fore, new machine learning models should be designed
to identify the causal modules (i.e., graphs or equa‐
tions) that do not inform or influence each other, and
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such modules should be able to characterize inherent
and invariant relations beyond the representation of
statistical dependence structures and be reused across
different environments.

Overall, using machine learning models or fitting
equation methods to calculate causal relations involves
two major steps. The first is to learn optimal feature
representation via machine learning models to disen‐
tangle for covariables or backdoor variables, and the
second is to obtain a fitting function f(X, Z, U) by
taking machine learning models as the generator of
function. The greatest challenge in using machine
learning to calculate the causal effect and to recognize
causality fields is choosing appropriate data coding,
known as the feature representation problem. The raw
observational data typically contain natural features
(e.g., pixels in the image, primary physiological and
pathological indicators of a patient), and it is difficult
to directly use them to do causal inference via poten‐
tial outcome or the backdoor criterion. Thus, perform‐
ing feature space optimization (e.g., feature transfor‐
mation and feature compression) on the natural features
is expected to better uncover the latent causality and
to help identify covariables or backdoor variables.
Accordingly, researchers have proposed a wealth of
data-driven causality analysis and computing models,
including the advanced machine learning models (e.g.,
deep learning and variational autoencoder), toward
better data representation. Please refer to the literature
(Guo et al., 2021; Schölkopf et al., 2021; Yao et al.,
2021) for details. Most importantly, for all of the causal
inference algorithms, a crucial issue is how to identify
the causality field to reveal the true causal effect among
variables. However, this topic still lacks in-depth dis‐
cussion. Note that ACE is often used to measure the
causal effect, which could be inappropriate in nonlin‐
ear causality and can distort the true causality.

4 Examples of the causality field

In this section, we apply the SCE model on sev‐
eral examples to illustrate the differences between
the causality field and ACE.

For this task, we obtain three datasets from Kaggle
(https://www.kaggle.com/), including the alcohol con‐
sumption dataset, life expectancy (WHO) dataset,

and diabetes dataset. These contain 213, 2938, and
768 samples, respectively. We then analyze the cau‐
sality field of the alcohol consumption (X) on the
suicide rate (Y) with income per person (Z) as the
confounding variable, body mass index (BMI) (X)
on life expectancy (Y) with gross domestic product
(GDP) (Z) as the confounding variable, and insulin
(X) on diabetes (Y) with age (Z) as the confounding
variable.

To calculate the causality field, we first need to
obtain SCE, as denoted by Eq. (2). As this is a non‐
linear equation, we apply machine learning models
to learn the equation to achieve a good fitting effect.
Considering that there are only two variables as input,
we apply support vector regression (SVR) to fit the
model for the first two datasets and support vector
machine (SVM) with the Gaussian kernel function
for the diabetes dataset. A five-fold cross validation
is conducted to optimize the hyper-parameters. Assum‐
ing that M denotes the trained model, y=M(x, z) repre‐
sents the causal equation of Y.

According to Definition 2, the causality field is

achieved by calculating
∂
∂X

f (X, Z, U). Here, the non‐

linear causal equation is obtained by training machine
learning models, which is out of the scope of this
paper. It means that we cannot obtain the form of
M(x, z); therefore, we apply a numerical method to
obtain the causality field through Eq. (17):

g ( x, z ) =
∂
∂X

M ( X, Z )

= lim
Δx→ 0

M (do ( x +Δx ) , z )-M (do ( x ) , z )
Δx

= lim
Δx→ 0

M ( x +Δx, z )-M ( x, z )
Δx

,

(17)

where M(do(x), z) represents the value of y when

performing the intervention X=x, given the condition
Z=z. Z is the unique backdoor variable, so M(do(x), z)=
EZ[M(x, z)].

Although X, Y, and Z may be continuous vari‐
ables, their values are discrete in practical datasets.
Thereby, for each x and z, we can use the established
model to compute g(x, z), while ACE(X→Y) can be

computed by∑z
g(x, z)P(z).
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Fig. 2 shows the causality field and ACE of the
alcohol consumption (X) on the suicide rate (Y) with
income per person (Z) as the confounding variable.
From ACE, we can find that with the increase of X,
the causal effect first decreases and then increases.
Besides, ACEs are larger than 0 regardless of the
value of X, which means that X has only a positive
effect on Y. This indicates that consuming alcohol
can only increase the suicide rate. It seems that if the
policy makers want to reduce this rate, they should
strictly prohibit alcohol consumption. However, when
we check the causality field, although it shows similar
trends to ACE, there are still some effects that are
smaller than 0 for different Z values; i.e., there are
negative causality field and null causality field. This
means that consuming a certain amount of alcohol
can sometimes reduce the suicide rate when the values
of X and Z fall into the scope of the negative causality
field; hence, we should allow some alcohol consump‐
tion to reduce the suicide rate.

To obtain the particular form of the causality field,
we fit a polynomial function g(x, z) according to
these discrete x, z values. Since the ranges of x and z
considerably vary, we perform normalization on x
and z before fitting the function. The mean and stan‐
dard deviation of x are 11.5 and 6.7, respectively, while
the mean and standard deviation of z are 2.62×104

and 1.51×104, respectively. Eq. (18) shows the function:

g ( x, z ) = 0.97 + 1.4x − 0.43z + 0.4x2 − 0.34xz

− 0.17z2 − .21x3 − 0.02x2 z − 0.05xz2.
(18)

The root-mean-square error (RMSE) is 0.094. If
{x, z} satisfies g(x, z)=0, then we can obtain the null
causality field Ω0. If {x, z} satisfies g(x, z) <0, then
we can achieve the negative causality field Ω-. We can
also obtain the positive causality field Ω+ by setting
g(x, z)>0. For example, the values {−1.103, 1}, {−0.8, 1},
{0, 1} of {X, Z} fall into the scopes of null causality
field, negative causality field, and positive causality
field respectively. These values are normalized, and
they correspond to the original values {4.11, 4.14×104},
{6.14, 4.14×104}, and {11.4, 4.14×104} respectively.

Figs. 3a and 3b respectively show the causality
field and ACE of BMI (X) on life expectancy (Y) with
GDP (Z) as the confounding variable. The normal
range of BMI is 18.5 to 25. We can find that, in this
normal range, ACE increases with the increase of
BMI. Beyond this normal range, ACE will decrease.
However, if we check the SCEz figure, we can find
that when GDP is larger than a threshold, BMI has
no effect on life expectancy. This means that, for lower
GDP, policy makers should pay attention to BMI to
increase people ’s life expectancy, while for higher
GDP, if they want to increase life expectancy, BMI is
no longer a factor to consider. This fact could not be
discovered from ACE. If polices are formed according
to ACE, there will be a waste of resources. For this
dataset, we do not fit functions for the unabridged
form, and only estimate the causality field for some
data points, as g(x, z) is too complicated.

Figs. 4a and 4b respectively illustrate the causal
effect and ACE of insulin (X) on diabetes (Y) with
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Fig. 2 Causal effect of the alcohol consumption on the suicide rate with income per person as the confounding variable:
(a) causality field; (b) average causal effect
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age (Z) as the confounding variable. For this dataset,

Y is binary and contains only two values, namely having

diabetes or not having diabetes. Therefore, we apply

the softmax function to convert the output into a con‐

tinuous value within the range from 0 to 1. For this

dataset, the causality field and ACE show a similar

trend. With the increase of insulin, the causal effect

decreases regardless of age. When it is larger than a

threshold, insulin has negative effect on diabetes,

which means that it can prevent the onset of diabetes.

When it is lower than a threshold, insulin can increase

the risk of diabetes. However, there is still a small

difference among different ages given the same insulin

dose. It means that the threshold for insulin on diabetes

varies according to age, and this variation is concealed

by averaging. We can control different thresholds of
insulin according to the age rather than using a fixed
threshold. After fitting a polynomial function, we can
obtain g(x, z) as

g ( x, z )=0.001 467−1.28×10−6 x−4.24×10−6 z

−7.8×10−10 x2+1.07×10−9 xz−3.86×10−8 z2.
(19)

Subsequently, we can identify the causality field
Ω0, Ω+, and Ω− based on this equation.

From the above three examples, we can infer
that the causality field differs a lot from the average
causal effect. When z varies, the causal effect will
change even for the same x. This inspires us that,
when trying to figure out the causal effect of X on Y,
we should check the confounding variable Z and
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Fig. 3 Causal effect of BMI on the life expectancy with GDP as the confounding variable: (a) causality field; (b) average
causal effect
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choose different strategies according to its value.
This can be applied for various situations, e.g., different
individuals and environments. This approach could
guide the individualized policy making process like
precision medicine.

Notably, we have used simple confounding vari‐
ables in the above three examples. In practice, it is
usually difficult to determine the confounding vari‐
ables. The above are just examples to illustrate the
differences between the causality field and ACE. When
handling complicated datasets, researchers should
refer to the graph-based model, potential-outcome
framework, or even deep learning based model to
obtain the causality field. However, these methods
are beyond the scope of this paper.

5 Conclusions

We present preliminary discussions on the problems
of nonlinear causal effect calculation and the causality
field, which are pivotal for solving complex practical
problems. These discussions could help understand both
linear and nonlinear causal relations. We expect further
considerations of these problems to facilitate the research
on nonlinear causal relations and their wider application.
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