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Abstract—How to effectively select a subset of discriminant 

features from the high-dimensional low- sample-size microarray 
gene expression profiles remains crucial and meaningful for the 
bioinformatics analysis tasks such as locating disease genes and 
building classifiers for cancer diagnosis. Though meta-heuristic 
harmony search algorithm has been used for feature selection, it 
suffers from entrapment in local optima and low convergence 
speed. To this end, we propose a hybrid chaotic harmony search 
based multi-objective feature selection method, which uses the 
chaotic map to replace the parameter of harmony search during 
the optimization process. Specifically, the minimum redundancy 
maximum relevancy feature selector is first used to pre-select a 
subset of relevant features. Then, the chaotic harmony search is 
employed on the reduced feature set to find an optimal feature 
subset, where the fitness of a candidate solution is evaluated by a 
multi-objective formulation. Finally, extensive comparative 
experiments against its competitors, including six filter and four 
wrapper feature selection methods, are conducted on six public 
microarray datasets. Results show that the proposed method 
obtains higher classification accuracy. Besides, the convergence 
analysis indicates its efficiency.  

Keywords—gene expression profiles, feature selection, chaotic 
optimization, harmony search 

I. INTRODUCTION 
Microarray technology enables us to obtain the expression 

profiles of thousands of genes simultaneously, which provides 
an objective way to locate disease genes and predict cancers at 
the molecular level [1]. Accordingly, researchers have used 
various statistical analysis and machine learning models to 
analyze the gene expression profiles. However, microarray data 
are typically characterized by small sample size (tens of 
samples) and high-dimensionality (thousands of genes), which 
suffers a great deal from the curse of dimensionality and limits 
the statistical power for practical use. One feasible way to 
alleviate this problem is to reduce the dimensionality with 
dimensionality reduction methods [2, 3].  

Dimensionality reduction methods can be broadly grouped 

into feature extraction and feature selection methods, where the 
former extract a group of new features (a combination of the 
original features) and the latter select a subset of features [3, 4]. 
Obviously, feature selection remains a priority for the 
subsequent tasks such as knowledge discovery, identifying 
biomarkers, and interpretability. Feature selection, called gene 
selection in the context of microarray data, aims to select a 
small subset of features from the original feature space by 
removing irrelevant and redundant features while maintaining 
the classification accuracy [4]. Accordingly, there are a wealth 
of feature selection methods available for use. According to the 
results returned by a feature selector, existing feature selection 
methods can be grouped into feature ranking and feature subset 
methods, where the latter return a final feature subset, while the 
former return a ranked list of the original features and an extra 
step is needed to determine how many features to select. 
According to whether a classification model is involved in the 
feature selection process, we can group them into filter, 
wrapper, embedded, and hybrid methods [5, 6]. Filter methods 
are independent of a classification model and use the designed 
metrics to measure the quality of a feature or a feature subset. 
Commonly used metrics include consistency-, distance-, 
dependency-, and information theoretic criterion-based metrics 
[4]. Filter methods are flexible in combination with different 
classification models and generally have lower computational 
complexity. In contrast, wrapper methods use a classification 
model to evaluate the goodness of a candidate feature [6]. They 
usually take as the evaluation metrics the classification 
accuracy, error rates, and area under the curve. Benefiting from 
its interaction with the classification model, wrapper methods 
generally provide better accuracy, but with higher 
computational cost. Embedded methods are a special case of 
wrapper methods and they obtain the feature subset during 
building classifiers. Hybrid methods are a combination of filter 
and wrapper methods in order to take advantage of both 
methods. One commonly used scheme is to first use a filter to 
remove irrelevant features and then use a wrapper to obtain the 
final feature subset [7].  

Particularly, in developing a feature selection method, the 
search strategy largely determines its performance. Since the 
sequential search methods (e.g., sequential forward/backward 
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selection, and sequential floating selection) easily suffer from 
entrapment in local optima, researchers have explored meta-
heuristic algorithms having the global-search capability for 
feature selection, among which harmony search (HS) has been 
applied due to its simplicity and flexibility [8, 9]. However, as 
most meta-heuristic algorithms, HS is also easily trapped into 
local optima. To this end, we herein present a hybrid chaotic 
harmony search based feature selection method that uses the 
chaotic map to control the optimization process [10]. 
Specifically, we first use the minimum redundancy maximum 
relevancy (mRMR) feature selector to pre-select a subset of 
features, and then use the chaotic HS with a multi-objective 
fitness function to obtain the final features from the results of 
mRMR. The main contributions of this study include the 
following. (1) We present a hybrid feature selection method 
and incorporate the chaos theory into harmony search. Due to 
the quasi-stochastic property, ergodicity, and sensitivity against 
initial conditions of the chaotic map, this helps to improve the 
performance of harmony search algorithm. (2) We present a 
multi-objective fitness function to balance the predictive power 
and the size of a candidate feature subset. (3) We conduct 
experiments and compare the proposed method with other ten 
feature selectors. Results demonstrate the superiority of the 
proposed method over its competitors.  

II. THE PROPOSED METHOD 

A. Harmony Search based Feature Selection 
Harmony search, one of the meta-heuristic algorithms, is 

inspired by the improvisation process of a group of music 
players. It has the advantage of flexibility, simplicity, and a fast 
convergence rate [9], and has a wide range of applications such 
as optimization, machine learning, and complex system control. 
Harmony search algorithm mainly consists of two phases: 
initialization phase and iteration phase, where the former 
randomly generates a pool of initial solutions and the latter 
improves the candidate solutions. For HS-based feature 
selection, it works with the following steps. Algorithm 1 also 
presents the pseudo-code, where rand( ) generates a random 
number between 0 and 1 and randInt(a, b) generates an integer 
between a and b.  

(1) Initializing harmony memory. Randomly generate a 
pool of Harmony Memory Size (HMS) harmonies within the 
feasible solution space, and store them in a matrix HM, called 
harmony memory. Each column is a feature (musician), and 
each row is a solution (harmony) and has a dimension N equal 
to the number of features. For feature selection, each row is a 
N-dimensional vector that codes a candidate feature subset, and 
its elements are configured with binary values with one 
corresponding to the selection of a feature.  

(2) Improvising a Harmony. Improvising a harmony Hnew 
with memory consideration, pitch adjustment, and random 
consideration. Specifically, for each element of Hnew, if the 
random number between 0 and 1 is greater than the harmony 
memory consideration rate (HMCR), the pitch is determined by 
the random consideration operation (line 9); otherwise, a pitch 
is picked from the memory (line5), and if a random number is 
less than the pitch adjusting rate (PAR), the pitch adjustment 
operation sets the binary value to its opposite.  

Algorithm 1. HS-based Feature Selection 

Input: Training set Data, HMS, HMCR, PAR, NI; 
Output: Final selected features S 

1 Randomly generate HMS solutions and store them in HM;  
2 for count = 1 to NI do //number of improvisation  
3      Hnew = zeros(1, N); //initialize a new harmony 
4      for t = 1 to N do //for each pitch (feature) 
5            if rand( ) ≤ HMCR do 
6                 Hnew(1, t) = HM(randInt(1, HMS), t); 
7                 if rand( ) < PAR do //pitch adjustment 
8                     Hnew(1, t) = 1 - Hnew(1, t); 
9            else 

10                 if rand( ) < 0.5 do 
11                     Hnew(1, t) = 1; 
12      idx = min(fitness(HM));  //worst harmony index 
13      if fitness(Hnew) > fitness(HM(idx, :)) do 
14          HM(idx, :) = Hnew;  
15 final = max(fitness(HM));  //best harmony index 
16 obtain S with the final-th harmony; 
17 Return S; 
 

(3) Updating harmony memory. If the fitness of Hnew is 
higher than the worst fitness of harmony Hidx in HM, then Hidx 
is replaced by Hnew. Since feature selection aims to minimize 
the data dimensionality while maintaining the classification 
accuracy, we take it as a multi-objective problem and use the 
following function to measure the fitness of a harmony H in 
order to achieve the balance between the two objectives.  

| |( ) * (1 )*(1 )α α= + − −
Sfitness H acc
N

 (1) 

, where S is the feature subset coded by H, acc is the accuracy 
in percent of a classifier trained on S, and α is the tradeoff 
between the two components.  

(4) Stopping criteria. The improvisation process ends 
when a pre-defined maximum number of improvisations (NI) is 
reached.  

B. Chaotic Harmony Search based Feature Selection 
Predefined fixed parameters are typically adopted in the 

classical harmony search algorithm, and it is a non-trivial task 
to determine a good parameter value. Accordingly, there are 
studies that use the dynamic parameter adjustment schemes. 
Motivated by the improvisation process, researchers proposed 
to increase the harmony memory and HMCR, and decrease the 
PAR with the iteration t (1 ≤ t ≤ NI) at run time, where linear 
scheme is commonly used, as shown in Eqs. (2)-(4), 

min max min( )= + −t
tHMS HMS HMS HMS

NI
 (2) 

min max min( )= + −t
tHMCR HMCR HMCR HMCR

NI
  (3) 

max max min( )= − −t
tPAR PAR PAR PAR

NI
  (4) 

Although the above scheme generally achieves improved 
performance, it is still not easy to set their values and HS may 
get stuck in local optima. In order to balance the exploitation 
and exploration, the chaotic optimization can be used to boost 
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the performance. Due to the ergodicity and non-repetition of 
chaos, chaotic algorithm can search the solution space more 
efficiently than the probability-dependent stochastic methods. 
The key idea of chaotic harmony search is to replace the HS 
parameters with the chaotic pseudorandom sequences. Herein,  
we propose to tune HMCR and PAR with the logistic map (Eq. 
5) to obtain the chaotic sequence,  

1 4* *(1 ),  {0,1,2,..., }+ = − ∈t t tC C C t N       (5) 

, where C0 is a randomly generated initial value. Algorithm 2 
presents the pseudo-code, where the chaotic sequences of 
HMCR and PAR are CH and CP, respectively (see line 5). 
Besides, how to add the dynamic harmony memory operation 
in the harmony search process is given in line 16.  

C. Proposed Feature Selection Method 
The proposed method, named mRMR-CHS, is a hybrid 

combination of filter and wrapper methods and consists of two 
stages to obtain the final features. First, the top ranked Q 
features are selected from the original feature space with 
mRMR. This helps greatly reduce the search space for HS. 
Afterwards, chaotic harmony search based feature selection is 
adopted on the reduced feature set to obtain the final features. 
Fig. 1 presents the proposed feature selection method and how 
to use it in the classification framework.  

Algorithm 2. Chaotic HS-based Feature Selection 

Input: Training set Data, HMS, HMCR, PAR, NI; 

Output: Final selected features S 
1 Randomly generate HMS solutions and store them in HM;  
2 for count = 1 to NI do //number of improvisation  
3      Hnew = zeros(1, N); //initialize a new harmony 
4      for t = 1 to N do //for each pitch (feature) 
5            get CHt and CPt using the chaotic map 
6            if rand( ) ≤ CHt do 
7                 Hnew(1, t) = HM(randInt(1, HMS), t); 
8                 if rand( ) < CPt do //pitch adjustment 
9                     Hnew(1, t) = 1 - Hnew(1, t); 

10            else 
11                 if rand( ) < 0.5 do 
12                     Hnew(1, t) = 1; 
13      idx = min(fitness(HM));  //worst harmony index 
14      if fitness(Hnew) > fitness(HM(idx, :)) do 
15          HM(idx, :) = Hnew; 
16      generate (HMSt -HMSmin) new harmonies for HM; 
17 final = max(fitness(HM));  //best harmony index 
18 obtain S with the final-th harmony; 
19 Return S; 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Dataset 
To evaluate the proposed method, extensive comparative 

experiments are conducted on six public microarray datasets 
that cover both binary and multi-classes cases [6]. Table I gives 
their characteristics. The last column “#SGR” denotes the ratio 
of the number of samples to the number of genes.  

COLON: It consists of 62 samples and has 2000 genes. The 
task is to distinguish between cancer and normal samples.  

DLBCL: It is about the diffuse large-B-cell lymphoma data 
and has 77 samples. Each sample contains 7129 genes.  

ALLAML: It has 72 samples from the acute lymphoma 
leukemia (ALL) and acute myeloid leukemia (AML) tissues. 
Each sample has 7129 genes. The task is to distinguish the two 
types of leukemia.  

PROSTATE: It has 50 normal and 52 prostate samples. The 
number of genes is 12600. The task is to distinguish the tumor 
from normal samples.  

LEUKEMIA: It has 5327 genes and 72 samples. The task is 
to classify three subtypes (i.e., B-cell ALL, T-cell ALL, and 
AML) of leukemia.   

SRBCT: It includes 83 samples about four different types of 
childhood tumors. Each sample consists of 2308 genes.  

 
Fig. 1. Flowchart of the feature selection and classification.  

TABLE I.  EXPERIMENTAL DATASETS 

Dataset #Classes #Samples #Genes #SGR 
COLON 2 62 (40/22) 2000 0.031 

DLBCL 2 77 (58/19) 7129 0.011 

ALLAML 2 72 (25/47) 7129 0.010 
PROSTATE 2 102 (52/50) 12600 0.008 

LEUKEMIA 3 72 (38/9/25) 5327 0.014 
SRBCT 4 83 (29/25/11/18) 2308 0.036 

B. Experimental Setup 
To generate independent training sets and test sets and to 

avoid selection bias in gene extraction, nested cross validation 
is adopted [11]. Specifically, external ten-fold cross validation 
is used, where each one of the ten folds is retained as a test set 
to evaluate the quality of the final selected features and the 
remaining folds are used as the training set to select features 
and to train a classifier. The final result is the average of the ten 
results. Particularly, the selection of genes and the training of a 
classifier are only performed on the training set. Each sample 
of the training set is transformed to zero mean and unit 
standard deviation, and we also normalize the test set with the 
means and standard deviations of the training set. Fig. 1 gives 
the overall framework for gene selection and microarray data 
classification. The lower part is the test step and the upper part 
denotes the training step. In feature selection, to determine the 
fitness of a candidate feature subset with Eq. (1), the inner 
leave one out cross validation on the training set is used. We 
here use k-nearest-neighbor (KNN) to calculate the fitness of a 
feature subset and to evaluate the quality of the final selected 
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features [12, 13]. In the experiments, Accuracy (Acc) and F1 
are used as the performance metrics. Given C = {C1, C2, …, 
C|C|} to denote a label set with |C| different classes, F1 is the 
harmonic mean of precision and recall.  

2* *1=
+

precision recallF
precision recall

  (6) 

Precision is the average of the correctly classified sample 
for each class.  

| |

1

1
| | =

= ∑
C

i

i i

T
Precision

C NP
      (7) 

, where Ti is the number of samples from class Ci that are 
correctly classified, and NPi is the number of samples predicted 
with class Ci.  

Recall is the percentage of correctly retrieved samples for 
each class. 

| |

1

1
| | =

= ∑
C

i

i i

T
Recall

C NT
  (8) 

, where NTi equals the number of samples from class Ci.  

| |

1
| |

1

=

=

=
∑

∑

C

i
i

C

i
i

T
Accuracy

NT
  (9) 

As for the feature selectors, we include the commonly used 
methods ReliefF, mutual information maximization (MIM), 
min-redundancy max-relevance (mRMR), conditional mutual 
information maximization (CMIM), joint mutual information 
(JMI), as well as fast correlation based filter (FCBF) for 
comparisons [14]. Since ReliefF, MIM, CMIM, MRMR, and 
JMI return a ranked list of features, we experimentally choose 
the twenty-five top-ranked genes to get the final feature subset 
[15, 16]. Besides, we compare mRMR-CHS with other four 
harmony search-based feature selection methods, called regHS, 
dyHS, mRMR-regHS, and mRMR-dyHS. Specifically, regHS 
and dyHS select features from the original feature space, while 
mRMR-regHS and mRMR-dyHS first use mRMR to filter out 
irrelevant features and then select features within the reduced 
feature space. Besides, regHS and mRMR-regHS use the fixed 
predefined parameter values, and dyHS and mRMR-dyHS use 
a dynamic parameter adjustment scheme. In the experiments, 

for mRMR-regHS, mRMR-dyHS, and mRMR-CHS, we first 
use mRMR to pre-select one-hundred fifty features and then 
use harmony search to obtain the final features. Table II 
presents the parameter settings of HS used in the experiments.  

TABLE II.  PARAMETER SETTINGS 

Algorithm Parameter Value Parameter Value 

regHS and 
mRMR-regHS 

Memory size 
HMCR 
PCR 

30 
0.8 
0.3 

Max iterations NI 
Fitness weight α 

100 
0.9 dyHS and 

mRMR-dyHS 

Memory size 
HMCR 
PCR 

30-50 
0.5-0.9 
0.3-0.1 

mRMR-CHS Memory size 30-50 

C. Classification Performance 
Table III presents the classification performance of the 

proposed method and the six compared filter methods. The best 
accuracy achieved on each microarray data is shown in bold, 
and the last row “average” gives the averaged results of the 
datasets. The “w/o” denotes the results that are obtained 
without using feature selection. We observe that mRMR-CHS 
obtains the best results on four datasets and achieves 
comparable performance to the best results on the remaining 
two datasets. For example, mRMR-CHS obtains 100.00% 
accuracy on SRBCT, which is higher than the 91.57% of reliefF, 
98.80% of MIM, 98.80% of mRMR, 95.18% of CMIM, 98.80% 
of JMI, and 93.98% of FCBF. Second, we observe that 
mRMR-CHS achieves comparable performance to or 
outperforms mRMR on all the datasets. This indicates that the 
selected features of mRMR still contains irrelevant and 
redundant features.   

We then compare mRMR-CHS with other four harmony 
search based feature selection methods. Table IV shows the 
experimental results on the datasets. The last row “average” 
denotes the averaged results on all the datasets. The columns 
“#genes” and “#std” denote the mean and standard deviation of 
the number of selected features of the external ten-fold cross 
validation, respectively. The best result on each dataset is 
shown in bold. We observe that mRMR-CHS outperforms its 
competitors in five out of the six datasets. Second, compared 
with regHS and dyHS, the three two-stage methods (mRMR-
regHS, mRMR-dyHS, and mRMR-CHS) generally obtain 
feature subsets with smaller size and achieve higher 
classification accuracy. This demonstrates the effectiveness of 
mRMR-CHS.  

TABLE III.  ACCURACY AND F1 COMPARISONS OF MRMR-CHS AND FILTER MEHTODS 

Dataset w/o ReliefF MIM mRMR CMIM JMI FCBF mRMR-CHS 
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 

COLON 75.81 73.32 75.81 72.40 80.64 78.50 80.64 78.50 77.42 76.56 79.03 76.35 77.42 75.34 80.64 78.86 

DLBCL 81.82 74.72 85.71 80.46 80.52 74.27 93.51 91.44 89.61 86.02 89.61 86.59 89.61 88.07 96.10 95.25 

ALLAML 87.50 85.98 93.06 92.31 90.28 89.39 94.44 93.87 95.83 95.38 93.06 92.43 93.06 92.29 94.44 93.84 

PROSTATE 81.37 81.36 94.12 94.15 90.20 90.23 88.23 88.27 87.26 87.41 90.20 90.19 89.22 89.22 92.16 92.15 

LEUKEMIA 83.33 83.21 93.06 90.81 93.06 91.71 95.83 95.48 95.83 95.31 95.83 96.72 94.44 94.40 97.22 97.79 

SRBCT 84.34 85.52 91.57 92.84 98.80 98.89 98.80 98.82 95.18 96.11 98.80 98.89 93.98 95.19 100.00 100.00 

average 82.36 80.68 88.89 87.16 88.92 87.17 91.91 91.06 90.19 89.46 91.09 90.19 89.62 89.08 93.43 92.98 
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TABLE IV.  ACCURACY AND F1 COMPARISONS OF MRMR-CHS AND OTHER HARMONY SEARCH-BASED METHODS 

Dataset regHS dyHS mRMR-regHS_ mRMR-dyHS mRMR-CHS 
Acc F1 #gene #std Acc F1 #gene #std Acc F1 #gene #std Acc F1 #gene #std Acc F1 #gene #std 

COLON 75.81 72.89 981.10 17.84 69.36 66.20 71.90 4.82 80.64 78.50 71.50 3.95 80.64 78.86 69.20 5.16 80.64 78.86 71.70 7.30 

DLBCL 84.42 78.35 3526.1 35.72 83.12 76.19 61.60 3.13 93.51 91.92 60.00 2.45 92.21 91.29 60.60 3.17 96.10 95.25 61.20 3.43 

ALLAML 87.50 86.02 3566.1 68.44 88.89 87.58 62.40 2.32 95.83 95.38 60.30 3.71 94.44 93.87 58.90 2.02 94.44 93.84 61.90 2.77 

PROSTATE 81.37 81.36 6300.8 64.76 82.35 82.35 71.60 7.28 90.20 90.19 71.00 6.29 89.22 89.22 74.60 5.87 92.16 92.15 72.10 4.07 

LEUKEMIA 81.94 80.53 2617.6 31.08 83.33 83.21 62.50 2.68 94.44 94.43 63.20 3.26 97.22 97.79 61.60 3.66 97.22 97.79 62.80 2.94 

SRBCT 86.75 87.78 1140.7 30.05 80.72 82.00 62.00 2.87 96.39 96.96 61.20 1.87 96.39 97.02 59.30 2.21 100.00 100.00 60.90 3.11 

average 82.97 81.15 3022.07 41.31 81.30 79.59 65.33 3.85 91.83 91.23 64.53 3.59 91.69 91.34 64.03 3.68 93.43 92.98 65.10 3.94 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 2. Convergence curves of the fitness function on each dataset. (a) COLON; (b) DLBCL; (c) ALLAML; (d) PROSTATE; (e) LEUKEMIA; (f) SRBCT.   

D. Convergence Analysis 
In this section, we investigate the convergence of mRMR-

CHS along with the number of improvisations. Fig. 2 presents 
the curve of the convergence for the two components of the 
fitness function on each of the six datasets. The X-axis denotes 
the number of iterations, the left Y-axis refers to the accuracy, 
and the right Y-axis means the number of selected features. 
From Fig. 2, we observe that the number of selected features 
generally decreases and accuracy tends to increase during the 
iterative process, which leads to the improved fitness value. 
Second, we see that mRMR-CHS has a fast convergence rate 
and converges within one-hundred iteration steps, which 
demonstrates the efficiency of the proposed method.    

IV. CONCLUSION 
With an aim to select a subset of good features from the 

high-dimensional small-sample-size microarray data, in this 
study, we develop a hybrid feature selection method based on 
the chaotic multi-objective harmony search. Specifically, 
mRMR is first used to pre-select a small subset of relevant 
features from the original feature space, and then the chaotic 

harmony search, which replaces harmony search parameters 
with the chaotic map during the optimization process, is 
applied on the reduced feature set to find the optimal feature 
subset. Finally, extensive comparative experiments against six 
filter methods (i.e., ReliefF, MIM, mRMR, CMIM, JMI, and 
FCBF) and four wrapper methods (i.e., regHS, dyHS, mRMR-
regHS, and mRMR-dyHS) are conducted on six microarray 
datasets. The results show that mRMR-CHS achieves higher 
accuracy than its competitors. In addition, the convergence 
analysis indicates its efficiency.  
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