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Abstract—Ambient sensor-based in-home activity recognition 

plays a crucial role in the design and development of a smart 

home to better and actively respond to population aging. From 

the perspective of machine learning, how to extract features 

from sensor data largely determines the power of a data-driven 

human activity recognizer. However, few studies systematically 

investigate how to encode streaming sensor events. To this end, 

we herein conduct a comparison of different feature extraction 

techniques for activity recognition. Specifically, we explore two 

types of feature representations (i.e., statistical features and 

structural features) and evaluate their single use and joint use. 

Besides, we experimentally analyze the impact of window size 

on prediction accuracy. Finally, we perform experiments on 

three public datasets with 15 different feature encodings and 6 

classifiers. Results show that the joint use of different features 

generally obtains enhanced accuracy and that the interval 60s 

of window size achieves a better accuracy-speed tradeoff.   

Keywords-Smart home; human activity recognition; feature 

encoding 

I.  INTRODUCTION 

Smart homes advanced by the development of pervasive 
computing, senor technology, artificial intelligence, internet 
of things, and edge computing provide a feasible solution to 
the aging society in helping the elderly to live independently 
and maintain quality of life [1,2]. The key to the success of 
various smart home applications such as wellness evaluation, 
behaviour analysis, ambient assisted living tools, abnormal 
detection, and chronic disease management is to perceive 
the user states and environments, where activity recognition 
plays an important role in bridging the gap [3,4,5].  

The primary task of activity recognition is to train an 
activity recognizer for automatic and accurate prediction of 
on-going human activities with sensors [3,6,7,8]. Different 
from traditional tasks, activity recognition remains a more 
challenging topic, as human behaviours are characterized by 
inherent complexity. For example, different individuals may 
perform the same activity differently and even the same 
people can perform an activity differently for different time 
intervals and locations. Besides, interleaved, concurrent, and 
similar activities also exist [9,10].   

According to the used underlying sensing units, existing 
activity recognition methods can be broadly categorized into 
three groups: vision-, wearable-, and ambient sensor-based 

methods [7,11]. The vision-based methods utilize computer 
vision techniques to analyze the image captured by a camera 
or video, which is often limited to fixed locations and easily 
influenced by the variations of background, occlusion, and 
light. Wearable-based methods use the data of sensors worn 
by the user to train an activity recognizer and then use it to 
infer the on-going human activities [11]. Such methods have 
the advantage of low costs and easy configuration and are 
suitable for indoor and outdoor scenarios. One drawback is 
that they require users to wear a device, which would bring 
inconvenience to users, especially the elderly. In contrast, 
ambient sensor-based methods recognize human activities 
by capturing the interactions between an individual and the 
household objects and training an activity recognizer [12]. 
Such methods remain a priority in smart home environments 
due to their non-intrusiveness.  

With an aim to improve the generalization ability of an 
activity recognizer, researchers have conducted a wealth of 
studies on the components of the activity recognition chain, 
mainly including the segmentation of sensor data, feature 
extraction, and the choice of a classification model [13,14], 
among which how to encode time-series sensor data largely 
determines the recognition performance and has also drawn 
researcher’s attention [15]. For example, Tapia et al. used 
temporal features, such as the duration of a sensor event and 
the order of two sensors, for activity recognition [3]. Van 
Kasteren et al. proposed to encode sensor events with binary, 
change point, and last representations, respectively [12]. 
Yatbaz et al. used the duration of firing for each sensor to 
encode an instance and proposed a scanpath trend analysis 
method for activity recognition [16]. Wang et al. proposed 
three different feature encodings (i.e., binary, numerical, 
and probability representations) and then evaluated their 
combinations with different classification models [17]. The 
features used by Yan et al. include the ID and time of the 
first and last sensor events, the window size, and the number 
of firings of different sensors in a window [18]. Although 
researches have reported promising results, few studies 
conduct a systematic study on how to encode the streaming 
sensor data in ambient sensor-based activity recognition. To 
this end, we investigate different ways of extracting features 
from time-series sensor events. The main contributions are 
as follows. (1) We explore two types of features (i.e., 
statistical features and structural features) to encode sensor 
events. Specifically, we investigate three specific forms for 
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the former and two specific forms for the latter. For the five 
groups of features, besides their single use, we evaluate their 
joint use. (2) We preliminarily conduct parameter sensitivity 
analysis of the sliding-window size in segmenting streaming 
sensor events. (3) Comparative experiments are conducted 
on activity recognition datasets collected by ambient sensors 
in smart homes. Results show that the joint use of different 
features generally obtains enhanced prediction accuracy and 
that the window size has an impact on the performance of an 
activity recognizer.  

The rest of this paper is organized as follows. Second II 
illustrates the activity recognition chain and different ways 
of feature extraction. Experimental setting and results are 
shown in section III, followed by the conclusion section.  

II. ACTIVITY RECOGNITION MODEL 

A. Activity Recognition Chain 

Sensor-based activity recognition chain mainly consists 
of the following steps. First, the time-series data of the used 
sensors are collected and annotated, where the starting time 
and ending time of an activity and associated sensor events 
are recorded. Commonly used annotation methods include 
self-recall, audio and video, and experience sampling. Then, 
the streaming sensor data are divided into segments with the 
sliding window technique. Explicit segmentation and time-
based segmentation are two representatives. The former is 
more suitable for the offline setting, while the latter is more 
appropriate to practical use. Obviously, the size of the used 
sliding window is a crucial factor. Third, we extract various 
features from the segment to form a feature vector. Finally, 
we train an activity recognizer with the feature vectors and a 
classification model. There are a number of classification 
models available that range from discriminant models to 
generative models. During the prediction phase, the test data 
are first segmented and encoded into feature vectors and 
then the activity recognizer infers on-going activities. Figure 
1 presents the overall framework.  
 

 

Figure 1. Activity recognition chain.  

Figure 1 clearly shows the key role of feature extraction 
in building a powerful activity recognizer. In the following 
subsection, we will introduce how to encode the time-series 
sensor data.  

B. Feature Extraction  

After dividing time-series sensor data into segments, we 
extract features from each segment. Different from wearable 
sensors that have constant sampling rates, ambient sensors 

often work in an event-triggering scheme. We in this section 
present two ways of extracting features from one segment t 
to get a feature vector xt = (x1, x2, …, xN), where N equals 
the number of sensors deployed in a smart home and xi 
corresponds to the ith sensor. First, we can extract statistical 
features to represent a segment.  

1) binary representation. xi shows whether sensor i fired 
in t. xi equals 1 if it fired; otherwise, 0.  

2) numerical representation. xi records the number of 
firings of the ith sensor in t.  

3) probability representation. xi is a normalized version 
of numerical representation and indicates the percentage of 
firings.  

F or example, for a smart home with five sensors, during 
a specific time interval, the first sensor was triggered twice 
and the thir d sensor was triggered three times, then the 
vectors of the t hree representations are xb = (1, 0, 1, 0, 0), xb 
= (2, 0, 3, 0, 0), and xb = (0.4, 0, 0.6, 0, 0), respectively.  

Second, r ather than use the number of occurrences, we 
can extract s tructural information.  

4) change point representation. We set the value of 1 to 
time-slices where the sensor reading changes; otherwise, 0. 
This indicates the starting and ending times of the firings of 
a sensor.  

5) last fired representation. The last sensor that changed 
state (i.e., corresponding to the starting and ending times) 
continues to be given 1 until a different sensor changes state.  

Furthermore, we can jointly use the feature encodings to 
form a concatenated feature vector. For example, we can use 
binary and numerical representations or use binary, change 
point and last fired representations.  

III. E XPERIMENTAL SETTING AND RESULTS 

A. Experiment al Setting 

Comparative experiments are performed on three public 
activity recognition datasets as shown in Table I [19], where 
activities of interest are sensed and recorded by a collection 
of ambien t sensors when a resident living in a smart home 
performed activities of daily living. The used sensors are 
attached to or placed on the ambient objects and idle activity 

is not considered [17]. We use a time-based sliding window 
with a size of 60s to segment time-series sensor events and 
then extract features from each segment to get a feature 
vector. To compare the power of different types of features, 
six widely used classification models with different metrics, 
including naïve Bayes (NB), k nearest-neighbor with k = 1 
(1NN), support vector machine with linear kernel (SVM), 
decision tree (DT), hidden Markov model (HMM), and 
hidden semi- Markov model (HSMM) are employed to train 
activity rec ognizers towards unbiased evaluation [17].  

TABLE I. Description of the experimental datasets 

Dataset SH1 SH2 SH3 

Number of sensors 14 23 21 

Number of residents 1 1 1 

Number of a ctivities 9 12 15 

Number of sensor events 1229 19075 22700 
Number of days  monitored 25 14 19 
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B. Performance Metrics 

To generate independent training and test sets, leave one 
day cross validation scheme is adopted. That is, sensor data 
of one full day are used as the test set and sensor data of the 
remaining days are used as the training set. Afterwards, an 
activity recognizer is trained on the training set and makes 
predictions on the test set. The final results are the average 
of the above processes and we herein report both class 
accuracy and time-slice accuracy.  

Given L = {L1, L2, …, L|L|} to indicate a class space with 
|L| classes, for a test sample x with true label yx and predicted 
label prd(x), the performance of a classifier associated with a 
test set X is defined as:  
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, where I(a=b) is an indicator function, Nl is the number of 

samples from class Ll, and |X| is the number of samples of X.  

Besides time-slice accuracy, we report F1 to account for 
the class imbalance problem.  

C. Experimental Results 

Tables II-IV present the experimental results of different 
types of features and their combinations on the datasets, 
respectively. Bin, Nume, and Prob denote binary, numerical, 
and probability representations, respectively. For illustration 
purpose, we divide the results in three groups based on the 
use of feature representations. For each classification model, 
the best F1 is underlined and the best result in each group is 
shown in bold. Class and slice in the second row correspond 
to the class accuracy and time-slice accuracy, respectively. 
From Tables II-IV, we see that the use of last representation 
generally has better accuracy than that of binary, numerical, 
probability, and change point encodings. This is possibly 
because that the last representation can better characterize 
human activities. Second, as for the use of two types of 
features, we observe that the joint use of change point and 
last representations performs better in the majority of cases.  
Particularly, it achieves higher accuracy than the single use 

TABLE II. Experimental results of different feature sets on SH1 

Features 
NB 1NN SVM DT HMM HSMM 

class slice F1 class slice F1 class slice F1 class slice F1 class slice F1 class slice F1 

Bin 45.45 86.53 48.74 35.92 

 

37.92 

 

37.91 

 

51.28 

 

93.69 

 

53.39 

 

51.39 

 

93.71 

 

53.96 

 

54.17 

 

61.99 

 

49.90 

 

62.16 

 

67.51 

 

55.29 

 

Nume 44.81 86.34 47.80 39.21 

 

38.30 

 

39.86 

 

56.69 

 

93.74 

 

59.16 

 

58.29 

 

93.90 

 

60.56 

 

47.69 

 

61.71 

 

44.81 

 

59.94 

 

73.38 

 

55.16 

 

Prob 31.80 83.36 30.28 38.86 

 

38.28 

 

39.73 

 

48.16 

 

85.46 

 

50.72 

 

58.04 

 

93.72 

 

59.04 

 

24.31 

 

43.51 

 

20.47 

 

31.82 

 

59.80 

 

29.53 

 

Change 49.14 62.28 53.22 44.33 

 

37.79 

 

49.11 

 

50.96 

 

62.34 

 

55.41 

 

49.21 

 

62.31 

 

53.40 

 

79.65 

 

93.83 

 

76.16 

 

81.35 

 

93.82 

 

77.80 

 

Last 76.19 98.80 72.07 75.08 

 

98.25 

 

70.20 

 

75.91 

 

98.79 

 

72.83 

 

75.68 

 

98.83 

 

71.83 

 

81.69 

 

98.69 

 

76.45 

 

83.42 

 

98.71 

 

77.80 

 

Bin&Change 59.06 87.15 59.61 42.97 

 

45.43 

 

44.24 

 

63.49 

 

95.24 

 

65.15 

 

62.78 

 

94.39 

 

65.41 

 

64.71 

 

62.80 

 

56.65 

 

74.82 

 

81.01 

 

66.74 

 

Nume&Change 58.73 87.18 59.93 42.62 

 

45.42 

 

42.43 

 

62.98 

 

95.27 

 

64.83 

 

62.20 

 

94.35 

 

64.20 

 

65.73 

 

70.82 

 

58.14 

 

74.68 

 

85.30 

 

67.59 

 

Prob&Change 56.21 85.18 57.99 43.22 

 

45.44 

 

43.68 

 

58.97 

 

88.23 

 

61.15 

 

62.92 

 

94.26 

 

62.70 

 

60.18 

 

56.07 

 

54.34 

 

67.83 

 

70.35 

 

62.20 

 

Bin&Last 76.58 98.75 71.55 72.40 

 

98.33 

 

68.69 

 

76.13 

 

98.66 

 

72.44 

 

75.20 

 

98.69 

 

69.88 

 

84.36 

 

98.80 

 

80.14 

 

84.44 

 

98.82 

 

80.68 

 

Nume&Last 77.68 98.86 73.39 74.14 

 

98.47 

 

68.80 

 

76.46 

 

98.77 

 

71.77 

 

76.17 

 

98.68 

 

71.92 

 

82.85 

 

98.87 

 

78.67 

 

83.90 

 

98.86 

 

78.95 

 

Prob&Last 72.39 98.74 70.93 75.90 

 

98.52 

 

70.83 

 

75.77 

 

98.77 

 

71.61 

 

75.48 

 

98.63 

 

71.28 

 

81.65 

 

98.91 

 

78.38 

 

82.90 

 

98.96 

 

79.73 

 

Change&Last 79.82 98.95 73.24 77.08 

 

98.47 

 

72.44 

 

78.40 

 

98.92 

 

73.31 

 

77.66 

 

98.91 

 

74.37 

 

85.48 

 

98.98 

 

80.02 

 

85.59 

 

98.98 

 

79.60 

 

Bin&Change&Last 79.57 98.87 73.34 74.90 

 

98.58 

 

70.11 

 

77.07 

 

98.78 

 

72.57 

 

75.87 

 

98.59 

 

70.78 

 

85.08 

 

98.82 

 

80.24 

 

85.36 

 

98.86 

 

80.15 

 

Nume&Change&Last 79.92 98.87 73.61 75.80 

 

98.56 

 

69.74 

 

76.51 

 

98.79 

 

71.69 

 

76.48 

 

98.68 

 

72.46 

 

84.81 

 

99.01 

 

79.62 

 

85.25 

 

98.98 

 

79.65 

 

Prob&Change&Last 77.13 98.88 71.89 76.22 

 

98.60 

 

71.64 

 

77.48 

 

98.82 

 

71.92 

 

76.03 

 

98.63 

 

71.76 

 

83.66 

 

99.02 

 

78.66 

 

84.17 

 

99.07 

 

79.08 

 TABLE III. Experimental results of different feature sets on SH2 

Features 
NB 1NN SVM DT HMM HSMM 

class slice F1 class slice F1 class slice F1 class slice F1 class slice F1 class slice F1 

Bin 40.44 89.17 39.09 35.86 

 

64.90 

 

33.85 

 

47.52 

 

81.45 

 

46.90 

 

47.81 

 

81.70 

 

44.28 

 

46.97 

 

62.24 

 

42.41 

 

48.59 

 

65.53 

 

44.39 

 

Nume 32.48 88.44 31.98 48.70 

 

71.35 

 

42.57 

 

56.16 

 

86.31 

 

53.83 

 

56.44 

 

84.33 

 

50.16 

 

39.49 

 

71.41 

 

36.49 

 

41.54 

 

71.54 

 

38.44 

 

Prob 25.28 68.62 24.25 48.09 

 

70.98 

 

42.69 

 

45.27 

 

92.53 

 

43.04 

 

51.84 

 

80.38 

 

48.64 

 

30.58 

 

89.05 

 

30.23 

 

30.58 

 

89.05 

 

30.23 

 

Change 47.80 71.03 46.81 38.19 

 

39.30 

 

34.89 

 

47.51 

 

70.57 

 

48.13 

 

50.08 

 

71.19 

 

50.16 

 

67.91 

 

82.80 

 

57.41 

 

67.67 

 

86.08 

 

55.68 

 

Last 51.78 89.87 49.11 50.54 

 

84.58 

 

46.83 

 

53.57 

 

88.54 

 

50.25 

 

56.20 

 

88.51 

 

54.13 

 

50.84 

 

48.47 

 

42.10 

 

64.11 

 

67.23 

 

51.69 

 

Bin&Change 56.46 92.04 53.35 43.79 

 

69.53 

 

40.26 

 

55.22 

 

89.09 

 

52.56 

 

54.48 

 

88.84 

 

50.18 

 

61.97 

 

78.25 

 

56.19 

 

58.45 

 

79.19 

 

52.13 

 

Nume&Change 52.57 92.08 51.22 48.18 

 

69.60 

 

42.18 

 

59.06 

 

88.57 

 

56.99 

 

57.91 

 

87.06 

 

52.46 

 

59.86 

 

81.20 

 

53.53 

 

61.38 

 

81.33 

 

55.60 

 

Prob&Change 46.02 74.13 46.06 49.78 

 

72.22 

 

44.67 

 

60.72 

 

92.34 

 

57.79 

 

53.39 

 

84.17 

 

50.64 

 

62.41 

 

90.82 

 

56.56 

 

63.12 

 

91.23 

 

58.50 

 

Bin&Last 57.78 87.27 54.76 46.39 

 

78.23 

 

43.22 

 

58.29 

 

88.14 

 

53.96 

 

57.77 

 

85.57 

 

51.06 

 

60.90 

 

73.33 

 

54.56 

 

65.32 

 

75.17 

 

57.67 

 

Nume&Last 53.41 89.99 51.79 52.07 

 

78.90 

 

47.63 

 

63.75 

 

88.89 

 

57.39 

 

57.02 

 

86.31 

 

51.81 

 

60.93 

 

79.17 

 

54.17 

 

61.13 

 

82.15 

 

54.37 

 

Prob&Last 49.23 88.70 49.46 51.78 

 

79.04 

 

45.78 

 

62.27 

 

90.48 

 

58.13 

 

57.16 

 

83.18 

 

50.87 

 

61.45 

 

80.85 

 

56.76 

 

66.35 

 

90.23 

 

61.03 

 

Change&Last 59.32 89.60 52.10 53.69 

 

86.74 

 

46.60 

 

59.96 

 

89.76 

 

57.19 

 

58.82 

 

88.72 

 

54.22 

 

55.41 

 

51.20 

 

45.46 

 

69.22 

 

85.82 

 

53.51 

 

Bin&Change&Last 60.85 90.25 54.88 48.93 

 

79.01 

 

44.33 

 

59.09 

 

88.59 

 

56.13 

 

53.06 

 

88.39 

 

47.38 

 

62.88 

 

73.71 

 

53.69 

 

66.86 

 

82.78 

 

59.67 

 

Nume&Change&Last 60.29 90.70 54.45 52.69 

 

80.98 

 

46.19 

 

59.97 

 

88.62 

 

56.30 

 

57.13 

 

86.30 

 

51.87 

 

66.25 

 

84.25 

 

58.32 

 

67.36 

 

84.29 

 

59.06 

 

Prob&Change&Last 57.83 89.75 52.69 52.11 

 

80.28 

 

46.12 

 

62.28 

 

91.81 

 

59.26 

 

57.34 

 

86.04 

 

51.92 

 

65.09 

 

86.69 

 

58.32 

 

69.76 

 

90.18 

 

62.23 
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TABLE IV. Experimental results of different feature sets on SH3 

Features 
NB 1NN SVM DT HMM HSMM 

class slice F1 class slice F1 class slice F1 class slice F1 class slice F1 class slice F1 

Bin 14.82 49.17 14.93 17.14 

 

26.91 

 

15.77 

 

21.19 

 

54.21 

 

18.96 

 

18.06 

 

34.21 

 

16.17 

 

16.77 

 

24.79 

 

14.60 

 

20.10 

 

27.00 

 

15.70 

 

Nume 11.96 47.35 12.74 26.73 

 

33.06 

 

26.41 

 

30.83 

 

52.88 

 

30.96 

 

23.55 

 

40.91 

 

21.32 

 

11.22 

 

27.04 

 

10.86 

 

16.70 

 

38.53 

 

14.73 

 

Prob 11.44 49.88 9.57 27.93 

 

34.03 

 

27.08 

 

23.37 

 

61.18 

 

23.20 

 

28.10 

 

43.21 

 

27.55 

 

12.39 

 

34.53 

 

10.31 

 

12.14 

 

40.03 

 

9.66  
Change 34.52 69.08 38.70 36.36 

 

41.49 

 

36.25 

 

34.39 

 

68.90 

 

37.49 

 

34.91 

 

69.08 

 

39.50 

 

55.03 

 

87.30 

 

48.48 

 

55.49 

 

87.99 

 

50.07 

 

Last 50.23 89.15 45.62 51.18 

 

88.36 

 

48.06 

 

50.08 

 

94.32 

 

45.75 

 

51.65 

 

94.51 

 

48.86 

 

60.57 

 

88.80 

 

53.79 

 

62.44 

 

88.89 

 

55.75 

 

Bin&Change 35.12 60.40 36.20 27.33 

 

33.07 

 

28.81 

 

34.44 

 

60.76 

 

36.17 

 

26.14 

 

40.96 

 

25.48 

 

36.84 

 

46.18 

 

32.32 

 

37.81 

 

49.12 

 

33.55 

 

Nume&Change 32.99 60.02 35.12 30.10 

 

34.01 

 

29.68 

 

36.33 

 

60.61 

 

37.84 

 

26.72 

 

41.84 

 

27.35 

 

40.06 

 

60.02 

 

35.99 

 

42.75 

 

66.71 

 

39.83 

 

Prob&Change 31.57 60.72 33.58 33.01 

 

35.90 

 

31.40 

 

34.06 

 

54.88 

 

36.93 

 

29.11 

 

41.81 

 

27.28 

 

41.50 

 

63.26 

 

37.18 

 

41.89 

 

63.44 

 

37.20 

 

Bin&Last 51.86 92.89 46.37 43.22 

 

75.61 

 

40.95 

 

47.93 

 

82.66 

 

44.75 

 

44.49 

 

84.04 

 

40.57 

 

50.12 

 

81.80 

 

44.87 

 

55.02 

 

87.11 

 

47.98 

 

Nume&Last 50.86 92.87 47.26 43.35 

 

77.37 

 

40.45 

 

48.10 

 

84.03 

 

44.82 

 

44.39 

 

82.78 

 

40.11 

 

50.28 

 

82.10 

 

45.69 

 

56.24 

 

88.09 

 

50.08 

 

Prob&Last 49.20 93.13 44.05 47.86 

 

86.61 

 

43.94 

 

52.08 

 

94.21 

 

47.05 

 

43.02 

 

81.36 

 

38.51 

 

48.01 

 

81.34 

 

43.72 

 

53.92 

 

86.62 

 

48.27 

 

Change&Last 53.34 92.01 47.61 52.54 

 

88.61 

 

49.44 

 

50.66 

 

94.47 

 

47.55 

 

50.57 

 

94.44 

 

47.81 

 

60.71 

 

88.80 

 

53.20 

 

61.65 

 

88.89 

 

54.21 

 

Bin&Change&Last 53.14 92.73 47.23 45.11 

 

79.44 

 

44.06 

 

47.54 

 

82.69 

 

45.66 

 

44.66 

 

84.04 

 

39.99 

 

57.19 

 

87.45 

 

50.25 

 

57.63 

 

88.20 

 

51.41 

 

Nume&Change&Last 52.40 93.45 47.63 44.86 

 

79.20 

 

40.98 

 

48.39 

 

85.15 

 

44.89 

 

44.31 

 

84.06 

 

40.25 

 

57.61 

 

88.19 

 

51.08 

 

58.80 

 

88.43 

 

52.10 

 

Prob&Change&Last 50.66 92.96 44.43 49.10 

 

88.02 

 

45.04 

 

53.36 

 

94.51 

 

49.86 

 

43.55 

 

83.25 

 

39.02 

 

55.80 

 

86.96 

 

49.18 

 

56.79 

 

87.26 

 

50.72 

 

TABLE V. Time-slice accuracy of different window sizes 

Features 
NB 1NN SVM DT HMM HSMM 

30s 60s 90s 30s 60s 90s 30s 60s 90s 30s 60s 90s 30s 60s 90s 30s 60s 90s 

SH1 

Last 98.95 98.80 97.63 

 

98.55 98.25 97.27 

 

99.01 98.79 97.66 

 

99.06 98.83 97.53 

 

98.91 98.69 97.81 

 

98.95 98.71 97.85 

 

Change&Last 99.16 98.95 97.86 

 

98.59 98.47 97.62 

 

99.07 98.92 97.84 

 

99.10 98.91 97.74 

 

99.10 98.98 97.92 

 

99.11 98.98 97.90 

 

Bin&Change&Last 99.09 98.87 97.75 

 

98.76 98.58 96.85 

 

99.03 98.78 97.70 

 

98.83 98.59 96.59 

 

99.00 98.82 97.80 

 

99.03 98.86 97.82 

 

Nume&Change&Last 99.06 98.87 97.73 

 

98.73 98.56 96.84 

 

99.02 98.79 97.70 

 

98.82 98.68 96.68 

 

99.07 99.01 97.86 

 

99.12 98.98 97.87 

 

Prob&Change&Last 99.17 98.88 97.81 

 

98.70 98.60 96.88 

 

99.08 98.82 97.79 

 

98.70 98.63 96.67 

 

99.21 99.02 97.98 

 

99.22 99.07 98.01 

 SH2 

Last 90.18 

 

89.87 88.54 

 

87.65 

 

84.58 

 

85.49 

 

90.29 

 

88.54 

 

88.87 

 

90.27 

 

88.51 

 

87.25 

 

51.26 

 

48.47 

 

48.96 

 

65.42 

 

67.23 

 

80.45 

 

Change&Last 90.05 

 

89.60 88.86 

 

87.70 

 

86.74 

 

89.14 

 

90.19 

 

89.76 

 

89.74 

 

90.12 

 

88.72 

 

89.36 

 

51.49 

 

51.20 

 

74.19 

 

69.97 

 

85.82 

 

89.83 

 

Bin&Change&Last 90.52 

 

90.25 89.32 

 

81.52 

 

79.01 

 

82.02 

 

87.49 

 

88.59 

 

90.72 

 

90.56 

 

88.39 

 

90.85 

 

68.69 

 

73.71 

 

80.41 

 

79.65 

 

82.78 

 

82.64 

 

Nume&Change&Last 90.76 

 

90.70 89.77 

 

81.64 

 

80.98 

 

81.78 

 

86.26 

 

88.62 

 

90.46 

 

92.02 

 

86.30 

 

87.73 

 

71.14 

 

84.25 

 

83.72 

 

80.38 

 

84.29 

 

83.72 

 

Prob&Change&Last 89.62 

 

89.75 88.80 

 

80.12 

 

80.28 

 

78.73 

 

89.72 

 

91.81 

 

95.67 

 

84.21 

 

86.04 

 

85.07 

 

73.63 

 

86.69 

 

89.27 

 

81.33 

 

90.18 

 

89.85 

 SH3 

Last 88.22 

 

89.15 91.54 

 

88.28 

 

88.36 

 

87.05 

 

94.87 

 

94.32 

 

94.00 

 

94.92 

 

94.51 

 

93.71 

 

89.06 

 

88.80 

 

88.04 

 

89.22 

 

88.89 

 

87.98 

 

Change&Last 89.62 

 

92.01 93.75 

 

88.32 

 

88.61 

 

87.37 

 

94.62 

 

94.47 

 

93.71 

 

94.74 

 

94.44 

 

93.36 

 

88.98 

 

88.80 

 

87.90 

 

89.04 

 

88.89 

 

88.11 

 

Bin&Change&Last 93.28 

 

92.73 92.76 

 

76.77 

 

79.44 

 

77.35 

 

81.79 

 

82.69 

 

81.04 

 

85.25 

 

84.04 

 

84.80 

 

82.34 

 

87.45 

 

87.24 

 

87.18 

 

88.20 

 

87.38 

 

Nume&Change&Last 93.17 

 

93.45 93.93 

 

76.92 

 

79.20 

 

77.50 

 

79.92 

 

85.15 

 

86.52 

 

85.12 

 

84.06 

 

84.97 

 

85.13 

 

88.19 

 

87.52 

 

87.58 

 

88.43 

 

88.97 

 

Prob&Change&Last 93.39 

 

92.96 92.53 

 

88.06 

 

88.02 

 

86.68 

 

94.89 

 

94.51 

 

93.45 

 

82.10 

 

83.25 

 

80.38 

 

81.77 

 

86.96 

 

86.62 

 

87.00 

 

87.26 

 

88.27 

 

 
of last representation, which, to a certain extent, indicates 
the information complementary of different types of features. 
Third, in terms of the combination of three different types of 
features, we observe that they achieve comparable results. 
Compared with change point and last representations, we 
observe that they generally obtain slightly worse accuracy. 
The main reason is that there probably exist redundant and 
irrelevant features [20,21].  

Besides, to further analyze the recognition results, we 
investigate the confusion matrix and only present the results 
of using NB on SH1 in Figure 2 due to the limited space. 
The rows (columns) denote the true (predicted) labels. We 
observe that the use of last representation better recognizes 
activities 1 and 5 compared to the use of binary, numerical, 
probability, and change point representations. For example, 
1785 samples of activity 5 are misclassified into activity 1 
for binary representation, the use of probability encoding 
makes 89 errors, and the last representation does not 
classify activity 5 into activity 1. Second, compared with the 
last representation, the joint use of change point and last 
encodings further enhances the overall recognition accuracy. 

Last, we observe that activities 1 and 5 have much more 
samples. This demonstrates the necessity of using F1 and 
reminds us of the class imbalance problem.   

The sliding-window size is an important parameter in 
determining the predictive ability of an activity recognizer, 
where a small size probably misses the sensor readings of an 
activity and a large size may involve multiple activities. We 
here experimentally evaluate its effects with three different 
values (i.e., 30s, 60s, and 90s) on the time-slice accuracy. 
Table V gives the experimental results. We only present the 
results of five types of features (i.e., last, change & last, bin 
& change & last, nume & change & last, and prob & 
change & last), since they performed better than others as 
shown in Tables II-IV. From Table V, we observe that the 
sliding-window size has an impact on the recognition rate 
and that a larger size tends to get degraded accuracy. This is 
mainly because the segment of a larger size contains sensor 
data associated with multiple activities. We also observe 
that the use of 60s achieves comparable performance to that 
of 30s. In view of the time costs in marking predictions, the 
use of 60s achieves a better accuracy-speed tradeoff.  
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(a) Bin 

 
(b) Nume 

 
(c) Prob 

 
(d) Change 

 
(e) Last 

 
(f) Change&Last 

 
(g) Nume&Change&Last 

 
(g) Prob&Change&Last 

Figure 2. Confusion matrix on SH1 of different feature representations using NB.  
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IV. CONCLUSION 

Activity recognition in smart homes greatly advances the 
design and implementation of ambient assisted living tools 
and applications towards healthy aging, in which how to 
extract features from time-series sensor events largely 
determines the performance and applicability of an activity 
recognizer. We in this study conduct a comparison of feature 
extraction methods for ambient sensor-based human activity 
recognition. Specifically, we extract and evaluate five types 
of feature encodings and their different combinations. We 
also evaluate the impact of sliding-window size on prediction 
accuracy. Experiments are conducted on three public datasets 
in terms of fifteen feature encodings and six classification 
models. Results show that the joint use of different features 
gets enhanced performance and that the use of change point 
and last representations generally works better. Besides, 
preliminary results indicate that the sliding-window size is an 
important factor that needs further investigation.  
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