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Abstract—Gene expression profiles measured by microarray 

technology enables accurate identification of disease genes, 

prediction of cancers, and distinguishing tumor subtypes at the 

molecular level. However, these profiles are characterized by a 

small sample size and high dimensionality, which would inevitably 

degrade the performance of analysis models.  In this study, we 

proposed a deep learning-based model to improve the prediction 

accuracy. Specifically, we first use the minimum redundancy 

maximum relevancy feature selector to discard irrelevant and 

noisy features. Then, we utilize a deep autoencoder to learn 

complex and nonlinear relationships among data. Finally, a 

predictor is trained on the latent representation to classify cancer. 

We conduct extensive experiments on four publicly available 

microarray datasets and compare the proposed model with six 

commonly used feature selectors using naïve bayes and decision 

tree in terms of accuracy and F1. Results demonstrate the 

superiority of the proposed model over its competitors.  

Keywords—microarray data, cancer prediction, deep learning, 

autoencoder, feature learning 

I. INTRODUCTION 

In the post-genome era, microarray technology has greatly 
facilitated us in conducting biological analysis tasks at the 
molecular level such as the prediction of cancers, identification 
of disease genes, and classification of tumor subtypes [1]. Gene 
expression profiles, however, are typically characterized by a 
small sample size (as few as tens of samples) and high 
dimensionality (as many as thousands of features), which 
inevitably results in degraded performance of machine learning 
models or statistical analysis models [2]. A classifier, for 
example, trained on the original feature space can easily suffer 
from overfitting [3]. One widely used solution is to reduce the 
dimensionality by filtering out irrelevant and noisy features [4].  

The primary goal of feature selection, also known as variable 
selection or gene selection in the context of microarray data 
analysis, is to discard noisy and irrelevant features while keeping 
informative features from original feature space. Accordingly, 
researchers have developed numerous feature selection methods 
to pursue enhanced performance, and we can classify them from 
various perspectives according to the general feature selection 
framework [4]. Firstly, we can divide feature selection methods 
into filter, wrapper, embedded, and hybrid methods based on 
whether they utilize a classification model to evaluate the quality 
of candidate features [5]. Wrapper methods use performance 

metrics (such as accuracy, error rates, and area under the curve) 
of a classification model to measure the quality of candidate 
features during the feature selection process. A certain search 
strategy (such as forward search, backward search, floating 
search, and random search) is employed in wrapper methods to 
generate candidate feature subsets. Embedded methods are 
essentially wrapper methods that output the finally selected 
features after training the predictor. Lasso algorithm, decision 
tree, and random forest are three common representatives of 
embedded methods. In contrast, filter methods use metrics other 
than classification performance (such as distance, dependency, 
consistency, and information theory-based metrics) to measure 
the quality of candidate features. Compared to wrapper methods, 
filter methods have a lower computational cost. Hybrid methods 
combine the wrapper and filter methods in order to achieve high 
classification accuracy and fast computation. For example, one 
can use a filter method to eliminate noisy and irrelevant features 
and then use a wrapper method to further optimize the feature 
space. Alternatively, one can integrate a filter into a wrapper 
method to reduce the search space. Secondly, we can divide 
existing feature selection methods into feature ranking methods 
and feature subset methods based on the output of the feature 
selector, where the former generates a ranked list of features and 
requires a further step to determine the final selected features. 

In addition to selecting informative features, mining their 
latent representations also plays a crucial role in determining the 
performance of a classifier. In recent years, deep learning 
models have achieved significant success and revolutionized 
many areas such as computer vision, text mining, natural 
language processing, and bioinformatics [6]. For instance, 
Fakoor et al. trained a model based on principal component 
analysis (PCA) and autoencoder for cancer type classification 
[7]. Basavegowda et al. proposed a model that uses PCA and 
deep feed-forward networks for cancer classification [8]. 
However, PCA is a feature extractor and reduces interpretability 
to a certain extent. Furthermore, some studies have conducted 
data preprocessing on the entire dataset (i.e., performing feature 
selection on the union of training and test sets), which would 
lead to biased results. To address these limitations, we propose 
a deep learning-based classification model to automatically 
learn high-level complex relationships among genes and to 
pursue better prediction accuracy. We first use the minimum 
redundancy maximum relevancy algorithm to discard noisy and 
irrelevant features and to mitigate the high-dimensional issue 
and then apply deep autoencoders to learn latent representations 
for better generalization. The main contributions of this study 
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are as follows: (1) We present a deep learning-based model for 
cancer prediction from gene expression profiles and demonstrate 
the power of autoencoder in learning nonlinear relationships 
among data. (2) We explore two different ways of building the 
prediction model, one combined with a feature selector and the 
other directly working on the original feature space. (3) We 
conduct comparative experiments against six competitors in 
terms of accuracy and F1 on four publicly available microarray 
datasets, covering binary and multi-class cases, and show the 
effectiveness of our proposed model.  

The rest of this paper is organized as follows. Section II 
details the proposed deep learning-based cancer classification 
model and its building blocks. Experimental setup and results 
are illustrated in section III, followed by the conclusion section.  

II. DEEP LEARNING MODEL FOR CANCER CLASSIFICATION 

A. Autoencoder 

An autoencoder, typically consisting of one input layer, one 
hidden layer, and one output layer, aims to reconstruct input in 
the output layer. That is, an autoencoder first transforms the n-
dimensional input x into h(x) in a k dimensional space using (1).  

(1) (1)( ) ( )h x f W x b    (1) 

where (1) *k nW  stores the weight matrix between the input 

layer and hidden layer, (1) *1kb  is the bias of hidden units, 

and f(.) is the activation function. Sigmoid function is among the 
commonly used one, as shown in (2): 

1( )
(1 exp( ))

f Q
Q

  (2) 

Afterwards, we try to recover x from h(x) by minimizing the 
difference g(x, y) between x and y.  

(2) (2)

min ( , )

s.t.  ( ( ) )

g x y

y f W h x b
        (3) 

where (2) *n kW  is the weight between the hidden layer and 

output layer, and (2) *1nb  is the bias of output units.  

After the above process, we get a latent representation h(x) 
of x. Furthermore, we can stack a collection of encoders to get a 
hierarchical architecture. In stacked autoencoder (SAE), the 
hidden layer of an autoencoder is the input to the adjacent layer, 
and the aim is to reconstruct the input with the last autoencoder. 
Given a SAE with P layers and the first layer is the input layer, 
for the p-th autoencoder, W(p) are the weight matrix and b(p) is the 
bias. The training procedure iterates with the greedy layer-wise 
scheme:  

( ) ( )

( 1) ( ) ( ) ( )

( )

=

p p

p p p p

a f Z

Z W a b
   (4) 

where 𝑍(𝑝) is the input of the p-th layer. This helps us to learn 
nonlinear and complex relationships among data.  

B. The Proposed Model 

Considering that microarray data have noisy and irrelevant 
features, we could use a feature selector to pre-select a subset of 
informative features. We in this study use the minimum 
redundancy maximum relevance algorithm (MRMR) to choose 
the top ranked r features for the purpose of interpretability rather 
than using a feature extractor such as PCA [9]. Next, we utilize 
autoencoders on the reduced data to learn latent representations. 
Finally, we train a classifier on the representation of the last 
layer for cancer prediction. Fig. 1 presents the corresponding 
framework.  

 

Fig. 1. The proposed classification model.  

III. EXPERIMENTAL SETUP AND RESULTS 

A. Experimental Dataset 

Comparative experiments are conducted on four microarray 
datasets that cover binary and multi-classes cases to evaluate the 
proposed method. Table I presents their descriptions, where we 
observe a high ratio (i.e., the last column) of the number of genes 
to sample size.  

1) BLADDER: It has 5724 genes and 40 samples (with 11 in 
T1 stage, 10 in T2-T4 stage, and 19 in Ta stage). The goal is to 
distinguish the three subtypes.  

2) COLON: There are 62 samples encoded by 2000 genes. It 
aims to build a classifier for colon cancer prediction.  

3) DLBCL: Diffuse Large-B-cell Lymphoma (DLBCL) 
dataset contains 77 samples and there are 7219 genes.  

4) LEUKEMIA: It consists of 25 AML samples, 9 T-cell 
ALL samples, and 38 B-cell ALL samples. There are collected 
from 5327 genes. The task is to distinguish the three subtypes.  

TABLE I.  EXPERIMENTAL DATASETS 

Dataset #Classes #Samples #Genes #SGR 

BLADDER 3 40 (10/19/11) 5724 0.007 

COLON 2 62 (40/22) 2000 0.031 

DLBCL 2 77 (58/19) 7129 0.011 

LEUKEMIA 3 72 (38/9/25) 5327 0.014 
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B. Experimental Setup 

For the proposed model, we first empirically use MRMR to 
pre-select 25 features and then apply the autoencoder on the 
reduced data to learn latent representations. In this study, we 
only use a one-hidden-layer autoencoder (AE) and a two-
hidden-layer stacked autoencoder (SAE) rather than fully 
explore a large number of architectures. We note corresponding 
methods as MRMR-AE and MRMR-SAE, respectively. 
Afterwards, we train classifiers on the learnt features. Besides, 
we can directly take as the input of an autoencoder the original 
features and we note them as all-AE and all-SAE for the purpose 
of comparison. Table II shows the hyperparameter setting for 
autoencoder training.  

To demonstrate the efficacy of our proposed method, we 
include a comparison with six commonly used feature selection 
methods (i.e., reliefF, Mutual Information Maximization (MIM), 
Joint Mutual Information (JMI), Conditional Mutual 
Information Maximization (CMIM), Minimum Redundancy 
Maximum Relevance (MRMR), and Fast Correlation-Based 
Filter (FCBF)) [9]. Among these methods, FCBF returns a 
subset of features and is classified as a feature subset selection 
method, whereas the other five are feature ranking methods. For 
our experiments, we choose the top 25 ranked genes for the 
feature ranking methods. After selecting features, we train our 
cancer diagnosis classification model using two different 
classifiers with different metrics, namely Naive Bayes (NB) and 
Decision Tree (DT). 

TABLE II.   HYPER-PARAMETER SETTING 

Model Architecture Parameter and Values 

AE A 
weight regularization: 0.004, sparsity: 0.15, 

activation: sigm, optimizer: CG, hidden unit: 25 

SAE A-A 
weight regularization: 0.004, sparsity: 0.15, 

activation: sigm, optimizer: CG, hidden unit: 25-25 

 
To avoid the selection bias issue, a stratified ten-fold cross 

validation is used to generate independent training sets and test 
sets [10, 11], where one dataset is partitioned into ten equal-
sized folds. Each fold is used as a test set to evaluate of power 
of a feature selection method and the trained classifier, and the 
remaining nine folds form a training set. We report the average 
of the ten results. Notably, feature selection and classifier 
training are only conducted on the training set. Besides, we 
transform the training set to zero mean and unit standard 

deviation and  use its mean and standard deviation to normalize 
the test set. Fig. 2 is the overall framework, where the upper part 
is the training stage and the lower part is the test stage. Accuracy 
(Acc) and F1 are taken as the performance metrics.  

C. Classification Performance 

Tables III-IV show the classification accuracy and F1 of the 
proposed method and its competitors when NB and DT are used, 
respectively. The column “w/o” corresponds to the case of 
without using feature selection and the best F1 on each dataset 
is shown in bold. The row gives the average results. First, we 
observe that the use of feature selection method generally 
improves classification accuracy in the majority of cases. 
Second, we observe that MRMR obtains comparable accuracy 
to other feature selectors, which indicates its effectiveness. Third, 
we observe that the use of MRMR to first pre-select a subset of 
features enhances the performance of the autoencoder. For 
example, when using NB on LEUKEMIA, MRMR-AE obtains 
95.83% accuracy compared to the 70.83% accuracy of all-AE 
and MRMR-SAE improves the accuracy from 68.06% of all-
SAE to 93.06%. For decision tree, all-AE and all-SAE obtain 
75.00% and 77.78% accuracy, respectively, compared to the 
83.33% accuracy of MRMR-AE and 95.83% accuracy of 
MRMR-SAE. This is mainly because MRMR discards 
irrelevant and noisy features and helps an autoencoder to better 
learn inherent representations. Fourth, we see that the number of 
hidden layers has an impact on the performance of autoencoders. 
In the study, MRMR-AE performs better than MRMR-SAE 
with NB, while MRME-SAE performs better with DT. This 
indicates that the choice of the number of hidden layers should 
consider the used classification models.  

 

Fig. 2. Flowchart of the model training and prediction.  

TABLE III.   ACCURACY AND F1 COMPARISONS OF DIFFERENT METHODS USING NAÏVE BAYES 

Dataset 
w/o ReliefF MIM CMIM JMI FCBF MRMR MRMR-AE 

MRMR-

SAE 
all-AE all-SAE 

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 

BLADDER 70.00  67.44  67.50  69.00  82.50  79.02  82.50  83.19  85.00  83.96  87.50  87.74  87.50  87.75  92.50  90.61  80.00  77.73  75.00  73.57  85.00  82.49  

COLON 56.45  59.87  83.87  82.10  83.87  83.39  83.87  84.09  83.87  82.82  77.42  76.56  83.87  84.09  87.10  86.28  85.48  83.85  77.42  75.90  61.29  63.33  

DLBCL 79.22  70.18  89.61  85.61  87.01  83.99  90.91  87.33  90.91  88.59  90.91  87.33  92.21  89.97  94.80  93.35  94.80  93.01  83.12  75.05  68.83  70.80  

LEUKEMIA 97.22  96.61  94.44  91.25  93.06  89.27  95.83  92.68  95.83  94.34  95.83  92.90  95.83  92.90  95.83  93.91  93.06  92.10  70.83  69.13  68.06  59.94  

average 75.72  73.53  83.86  81.99  86.61  83.92  88.28  86.82  88.90  87.43  87.92  86.13  89.85  88.68  92.56  91.04  88.34  86.67  76.59  73.41  70.80  69.14  
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TABLE IV.    ACCURACY AND F1 COMPARISONS OF DIFFERENT METHODS USING DECISION TREE 

Dataset 
w/o ReliefF MIM CMIM JMI FCBF MRMR MRMR-AE 

MRMR-

SAE 
all-AE all-SAE 

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 

BLADDER 65.00  58.59  70.00  66.31  62.50  57.27  57.50  50.09  62.50  56.91  57.50  50.47  62.50  58.17  72.50  72.50  87.50  86.94  80.00  77.55  82.50  79.23  

COLON 75.81  73.32  72.58  70.37  77.42  75.90  80.64  78.50  77.42  76.56  75.81  73.86  79.03  77.35  80.64  78.86  85.48  84.80  70.97  68.98  54.84  53.61  

DLBCL 81.82  73.98  85.71  80.46  88.31  84.02  89.61  85.39  85.71  79.91  81.82  74.72  88.31  84.57  89.61  86.59  90.91  87.58  88.31  83.62  74.03  62.57  

LEUKEMIA 86.11  83.31  84.72  76.84  84.72  79.59  84.72  80.41  84.72  82.57  84.72  80.41  84.72  82.57  83.33  78.20  95.83  95.50  75.00  69.09  77.78  65.41  

average 77.19  72.30  78.25  73.50  78.24  74.20  78.12  73.60  77.59  73.99  74.96  69.87  78.64  75.67  81.52  79.04  89.93  88.71  78.57  74.81  72.29  65.21  

TABLE V.    ACCURACY AND F1 COMPARISONS BETWEEN NAÏVE BAYES AND SOFTMAX 

Dataset 
MRMR-AE MRMR-AE-S MRMR-SAE MRMR-SAE-S all-AE all-AE-S all-SAE all-SAE-S 

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 

BLADDER 92.50  90.61  92.50  91.13  80.00  77.73  87.50  84.62  75.00  73.57  85.00  83.60  85.00  82.49  85.00  82.15  

COLON 87.10  86.28  79.03  77.93  85.48  83.85  83.87  82.39  77.42  75.90  80.64  78.86  61.29  63.33  70.97  68.98  

DLBCL 94.80  93.35  94.80  93.35  94.80  93.01  93.51  91.92  83.12  75.05  81.82  75.54  68.83  70.80  76.62  65.33  

LEUKEMIA 95.83  93.91  94.44  95.58  93.06  92.10  94.44  94.43  70.83  69.13  91.67  90.80  68.06  59.94  81.94  81.86  

average 92.56  91.04  90.19  89.50  88.34  86.67  89.83  88.34  76.59  73.41  84.78  82.20  70.80  69.14  78.63  74.58  

TABLE VI.    ACCURACY AND F1 COMPARISONS BETWEEN DECISION TREE AND SOFTMAX 

Dataset 
MRMR-AE MRMR-AE-S MRMR-SAE MRMR-SAE-S all-AE all-AE-S all-SAE all-SAE-S 

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 

BLADDER 72.50  72.50  92.50  91.13  87.50  86.94  87.50  84.62  80.00  77.55  85.00  83.60  82.50  79.23  85.00  82.15  

COLON 80.64  78.86  79.03  77.93  85.48  84.80  83.87  82.39  70.97  68.98  80.64  78.86  54.84  53.61  70.97  68.98  

DLBCL 89.61  86.59  94.80  93.35  90.91  87.58  93.51  91.92  88.31  83.62  81.82  75.54  74.03  62.57  76.62  65.33  

LEUKEMIA 83.33  78.20  94.44  95.58  95.83  95.50  94.44  94.43  75.00  69.09  91.67  90.80  77.78  65.41  81.94  81.86  

average 81.52  79.04  90.19  89.50  89.93  88.71  89.83  88.34  78.57  74.81  84.78  82.20  72.29  65.21  78.63  74.58  

 

Besides the two above classification models, we investigate 
the performance of the Softmax classifier that is widely used in 
deep learning models. Tables V-VI show its comparison to NB 
and DT, respectively. The corresponding results are indicated by 
MRMR-AE-S, MRMR-SAE-S, all-AE-S, and all-SAE-S. From 
Tables V-VI, we observe the mixed results. For example, 
MRMR-AE using DT performs better than MRMR-AE-S on  
COLON, but achieves lower accuracy on BLADDER, DLBCL, 
and LEUKEMIA. Second, we can also observe that the use of 
MRMR to pre-select a subset of features tends to obtain better 
performance. For example, MRMR-AE-S gets 92.5% accuracy 
on BLADDER compared to the 85.00% accuracy of all-AE-S, 
and MRMR-SAE-S improves the 85.00% accuracy of all-SAE-
S to 87.50%. This also motivates us to optimize a classification 
model on the reduced feature space, that is, it would be better to 
first optimize the feature space before conducting down-stream 
analysis tasks.  

IV. CONCLUSION 

Microarray gene expression profiles offer us an objective 
means of classifying cancers, identifying tumors, and locating 
disease genes at the molecular level. The small sample size and 
high dimension, however, poses a great challenge. To this end, 
we propose a deep learning-based model towards better cancer 
classification performance. Specifically, we first use MRMR to 
pre-select a small subset of features to discard irrelevant and 
noisy features, and then utilize autoencoders to learn complex 
and nonlinear relationships among data. Extensive comparative 
experiments are conducted on four publicly available microarray 
datasets again six commonly used feature selectors in terms of 
accuracy and F1, where two different classification models are 
used. Results indicate the effectiveness of the proposed method. 
Besides, we evaluate the impact of the number of hidden layers 
on prediction accuracy. For the further work, we plan to consider 
other application fields such as protein-protein interaction [12] 
and other deep learning models [13, 14].  
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