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A B S T R A C T   

Microarray technology facilitates the simultaneous measurement of expression of tens of thousands of genes and 
enables us to study cancers and tumors at the molecular level. Because microarray data are typically charac-
terized by small sample size and high dimensionality, accurate and stable feature selection is thus of fundamental 
importance to the diagnostic accuracy and deep understanding of disease mechanism. Hence, we in this study 
present an ensemble feature selection framework to improve the discrimination and stability of finally selected 
features. Specifically, we utilize sampling techniques to obtain multiple sampled datasets, from each of which we 
use a base feature selector to select a subset of features. Afterwards, we develop two aggregation strategies to 
combine multiple feature subsets into one set. Finally, comparative experiments are conducted on four publicly 
available microarray datasets covering both binary and multi-class cases in terms of classification accuracy and 
three stability metrics. Results show that the proposed method obtains better stability scores and achieves 
comparable to and even better classification performance than its competitors.   

1. Introduction 

The rapid development of microarray technology in the post-genome 
era enables us to simultaneous measure the expression profiles of 
thousands of genes [1–3]. However, due to the nature of microarray 
experiments and limitation of realistic conditions, the obtained gene 
expression profiles are characterized by small sample size and high 
dimensionality, which inevitably poses a huge challenge to downstream 
analysis tasks such as biomarker identification, cancer diagnosis, and 
tumor subtype differentiation [4–7]. One feasible way is to reduce the 
dimensionality with an effective feature selection algorithm [8,9]. 

Feature selection or variable selection, also called gene selection in 
the context of microarray data, aims to identify a subset of discrimi-
nating features by keeping highly-relevant features and filtering out 
irrelevant and redundant features from the original feature space [10, 
11]. Different from feature extraction method that generates new fea-
tures, which are a linear/nonlinear combination of original features 
[12], feature selection method selects a fraction of them and thus has 
better explanations. Effective feature selection methods help to identify 
potential biomarkers for further research of disease genes and drug 
targets and to train a powerful classifier for tumor subtype classification 

and cancer diagnosis [13,14]. According to whether a classification 
model is used to evaluate the goodness of candidate features, we broadly 
categorize existing methods into filter, wrapper, embedded, and hybrid 
methods [10,15,16]. Filter method is independent of a classification 
model and uses some metrics (such as distance metric, information 
theoretic metric, consistency metric, and dependency metric) to mea-
sure the importance of each feature [17], while wrapper method is 
coupled with a classifier and uses the classification accuracy to indicate 
the goodness of candidate features [18]. Compared with filter method, 
wrapper method generally achieves better prediction accuracy, but at 
the cost of higher time complexity [19]. Embedded method is basically a 
subclass of wrapper method and selects a subset of features after training 
the classifier. Decision tree and Lasso regression algorithm are two 
representatives [20]. Hybrid method utilizes the advantages of both 
filter and wrapper methods [21,22], and one common scheme is to first 
use a filter method to reduce the dimensionality and then use a wrapper 
method to optimize the reduced feature space. According to the outcome 
of feature selection methods, we can also group them into feature ranking 
method and feature subset selection method. The former returns a ranked 
list of original features and requires a further step to determine the 
number of finally selected features, while the latter outputs a subset of 
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features [7]. 
For microarray data analysis, besides the selection of discriminating 

genes and construction of an accurate classifier, feature selection sta-
bility is another critical topic, which refers to the ability of a feature 
selection algorithm to select the same or similar features with the change 
of microarray data [23,24]. Stable feature selection methods help obtain 
a reliable feature subset and further improve the interpretability. In 
contrast, a feature selector with poor stability would inevitably reduce 
the confidence of biomedical and bioinformatics researchers in applying 
it to identify potential biomarkers, especially when the costs of biolog-
ical verification experiments are high [25,26]. This hinders the accep-
tance and application of a feature selection algorithm. Hence, how to 
develop a stable and accurate feature selection algorithm remains 
crucial and meaningful for practical omics applications. 

Feature selection stability is a relatively complex problem and the 
influencing factors mainly come from data level (e.g., high dimensional, 
small-sample-size, and noisy data), algorithm level (e.g., a feature 
selector is sensitive to the initial values of hyperparameters), and spe-
cific application domains (e.g., multiple genes having similar expression 
profiles and biology functions exist) [27–29]. Accordingly, researchers 
have been paying attention to the stability problem associated with 
feature selection and conducting researches in stability metrics and al-
gorithm design [30,31]. According to the main idea of existing stability 
improvement methods, we broadly categorize them into three groups: 
sample weighting method, group feature selection method, and 
ensemble feature selection method [32,33]. 

The basic idea of sample weighting method is to assign different 
weights to each sample based on the its impact on the feature-class 
correlation and then conduct feature selection on the weighted sam-
ples [26]. The weighting strategy is to increase the weights of important 
samples and decrease the weights of unimportant samples. For example, 
Yu et al. proposed a margin-based sample weighting method and per-
formed feature selection on the weighted samples to improve its 
robustness to the change of data [26]. Experimental results on four 
microarray datasets demonstrate its effectiveness. Although enhanced 
performance is achieved, it is not easy to choose an appropriate distance 
metric and weighting strategy. Considering that there are genes having 
similar biological functions or expression levels, group feature selection 
method divides genes into different clusters and then performs feature 
selection on the clusters [29]. This method mainly consists of two steps: 
grouping and selecting, where the former divides genes into different 
clusters in a data-driven or knowledge-driven way (e.g., via a clustering 
algorithm or biological knowledge about gene functions) and the latter 
uses a certain criterion to choose representative genes from each cluster 
to form the finally selected features. For example, Yu et al. utilized the 
kernel density estimation technique to find dense feature groups and 
then selected a representative feature from the chosen groups that are 
highly relevant to the class [29]. 

The main idea of ensemble feature selection method, motivated by 
ensemble learning paradigm, is to first obtain multiple feature subsets by 
performing feature selection multiple times and then combine the sub-
sets into one set via a predefined aggregation strategy [4,30]. According 
to the way of generating an ensemble model, we divide existing 
ensemble feature selection methods into two groups: data perturbation 
method and function perturbation method [31]. For data perturbation, 
sampling techniques are used to generate multiple sampled datasets 
from the original data, then a base feature selection algorithm is per-
formed on each of the sampled datasets to obtain multiple subsets of 
selected features, and finally the returned subsets are combined into one 
set. For example, Abeel et al. utilized the random sampling to generate 
sampled datasets and used the base feature selection algorithm 
SVM-RFE to build an ensemble feature selector [25]. They developed a 
weighted average method to rank features and chose the top-ranked 
ones to get the finally selected features. Experimental results demon-
strated the effectiveness over its competitors. Function perturbation 
method uses multiple homogeneous/heterogeneous feature selection 

algorithms on the training data to get multiple feature subsets and then 
combines the subsets with an aggregator [13]. For example, Yang et al. 
proposed a feature selection method based on multi-criterion fusion, 
where they use multiple heterogeneous feature selectors to improve the 
stability [34]. 

Although ensemble feature selection method achieves promising 
results, however, it suffers from practical limitations [33]. For example, 
for function perturbation method, a group of synergistic feature selec-
tors is usually determined experimentally and there is still a lack of 
theoretical guidance. Second, most of existing studies take a feature 
ranking algorithm as the base feature selector, which requires users not 
only to decide the number of selected features but also to decide the 
order of thresholding (i.e., determining the number of features to select 
from a ranked list) and aggregating (i.e., combining multiple sets into one 
set). Particularly, it is not trivial to determine the optimal subset size for 
feature ranking methods and also difficult to assign appropriate and 
reasonable weights to ranked features in aggregating multiple sets. Be-
sides, the correlation among features and correlation between features 
and class are easily ignored. These motivate us to develop a method to 
automatically return a stable subset of features. To this end, we here 
propose an ensemble feature selection framework. It works under the 
ensemble learning paradigm and helps obtain a stable and accurate 
feature subset, as shown in preliminary experimental results [27]. Spe-
cifically, we instantiate the framework with a base feature algorithm 
considering relevance and redundancy and two developed aggregators 
to show its effectiveness. The main contributions of this study include 
the followings. (1) We propose an ensemble feature selection framework 
that can take as its building blocks various base feature selection algo-
rithms and aggregation strategies. We here instantiate the framework 
with a feature subset selection algorithm to optimize the feature space 
and to relieve user from determining the number of finally selected 
features. (2) We present two aggregation strategies to combine multiple 
feature subsets into one set. Since the proposed aggregators utilize 
occurrence frequency-based criterion, they potentially help select stable 
features. (3) We conducted comparative experiments on microarray 
datasets, covering both binary and multi-class problems, with four 
classification models and seven competitive feature selection methods. 
Results demonstrate the effectiveness of the proposed method over its 
competitors in terms of classification accuracy and stability. We also 
adopt three different stability metrics to measure the stability towards 
an unbiased comparison. 

The rest of this paper is organized as follows. Section 2 briefly re-
views experimental datasets, introduce the proposed ensemble feature 
selection framework, develop two different aggregation strategies, and 
present the feature selection and validation scheme. Experimental setup 
and results are shown in section 3, followed by the discussion and 
conclusion sections. 

2. Materials and methods 

In this section, we first introduce the experimental datasets and then 
detail the proposed ensemble feature selection framework. For illus-
tration purpose, we use X ∈ ℝm*n to denote the data matrix that has n 
genes and m samples and use F = {f1, f2, …, fn} to represent the n genes. 
Given a label set L = {l1, l2, …, lC} of a microarray dataset, where C is the 
number of classes, we use Y = {y1, y2, …, ym} (yi ∈ L,  1≤ i≤ m) to 
denote the labels of m samples. The labeled training data can thus be 
noted as Data = {(xi,yi)|xi ∈ X,yi ∈ L,1≤ i≤ m}. For a test sample x with 
true label l, the task of a classifier trained on Data is to infer the label of 
x. 

2.1. Datasets 

We conduct experiments on four publicly available microarray 
datasets, including SRBCT [3], Colon [35], DLBCL [36], and Leukemia 
[37], to validate the power of a feature selector in selecting 
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discriminating features from gene expression profiles. The datasets 
cover both binary and multi-class classification problems and are 
featured with high-dimension and small-sample-size. Such a setting 
poses a great challenge for gene selection and helps evaluate a feature 
selector objectively and comprehensively. Table 1 presents a brief 
summary of them, of which the first three columns denote the number of 
genes, the number of samples, and the number of classes, respectively, 
and the fourth column #SGR refers to the ratio between the number of 
samples and the number of genes associated with a microarray dataset. 

Small Round Blue Cell Tumor (SRBCT): Small round blue cell tumors 
belong to the malignant neoplasms and have a characteristic appearance 
of small round cells on routine histology. These tumors are commonly 
seen in children. SRBCT concerns four childhood tumors, including 
neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin Burkitt’s 
lymphoma (BL), and Ewing’s family of tumors (EWS). There are 18 NB, 
25 RMS, 11 BL, and 29 EWS samples, and each sample contains the 
expression profiles of 2308 genes. The purpose of this study is to train a 
classification model for classifying small round blue cell tumors to 
specific diagnostic categories based on the gene expression profiles. 

Colon: It contains a broad picture of the expression profiles of 2000 
genes. There are 62 samples obtained with Affymetrix Oligonucleotide 
Arrays, of which 40 samples are labeled as colon tumor and 22 samples 
are from normal colon tissue. The #SGR is 0.031. The task on this 
dataset is to select informative genes from the gene space and then build 
a classifier with the selected genes to distinguish between normal and 
colon tumor subjects based on the microarray data. 

Diffuse Large-B-Cell Lymphoma (DLBCL): The diffuse large B-cell 
lymphoma is a cancer of B cells and belongs to one form of non-Hodgkin 
lymphoma. The dataset has a collection of 19 follicular lymphomas (FL) 
samples and 58 diffuse large B-cell lymphomas (BCL) samples. Each 
sample contains the expression profiles of 7129 genes, which leads to a 
#SGR of 0.011. FL and BCL are two subtypes of B-cell lineage malig-
nancies. The goal is to train a classification model to classify the two 
tumors. 

Leukemia: Leukemia is a group of blood cancers and usually results in 
abnormal blood cells. The dataset is collected from the bone marrow and 
peripheral blood of leukemia patients, concerned with acute myeloid 
leukemia (AML), B-cell acute lymphoma leukemia (ALL-B), and T-cell 
acute lymphoma leukemia (ALL-T). ALL-B and ALL-T are the two sub-
types of acute lymphoma leukemia. There are 25 AML samples, 9 ALL-T 
samples, and 38 ALL-B samples, and each sample is encoded by 5327 
genes. We aim to build a classifier to distinguish the three tumors. 

2.2. Ensemble feature selection framework 

Fig. 1 shows the proposed ensemble feature selection framework. It 
mainly consists of three steps. The first step is sampling, where our 
framework applies sampling techniques on the training data Data to 
obtain M datasets {D1, D2, …, DM} at the instance level, rather than 
simply perform feature selection on Data. Commonly used sampling 
techniques include, but not limited to, Bootstrapping, M-fold cross- 
validation, over-sampling with/without replacement, and under- 
sampling with/without replacement. Afterwards, we use a base 
feature selector FSi (1 ≤ i ≤ M) on each of the M datasets to get M subsets 
of features. Finally, we design an aggregation strategy to combine the M 

feature sets to get the finally selected features. 
Obviously, base feature selector and aggregator are two crucial 

components of the framework. As for the choice of M base feature se-
lectors, we can use the same or different feature selection methods on 
the M datasets, which we call homogeneous scheme and heterogeneous 
scheme, respectively. As for the aggregator, different aggregation stra-
tegies are used according to the results returned by FSi. Specifically, if FSi 
is a feature subset method that outputs a subset of features Si (1 ≤ i ≤ M) 
of original features, the aggregation strategy can directly work on {S1, 
S2, …, SM} to get the finally selected features S. If FSi is a feature ranking 
method that returns a ranked list Ri (1 ≤ i ≤ M) of original features in 
descending order according to the importance of each feature, there are 
generally two strategies to combine multiple feature rankings. The first 
scheme is called aggregation and thresholding, which involves two steps. 
1) It keeps all the features in Ri (1 ≤ i ≤ M) and re-ranks the n features 
{f1, f2, …, fn} according to the statistics of {R1, R2, …, RM} to gets a 
ranked list R of original features. For example, we can use the average 
rank, weighted average rank, or minimal rank of each feature f in {R1, 
R2, …, RM} to weight the importance of f. 2) It uses a thresholding 
method to decide how many features in R to be kept and then returns the 
selected feature subset S. There are thresholding methods available, 
such as selecting top-k or a fixed percentage of features. In contrast, the 
second scheme is called thresholding and aggregation. It first applies a 
thresholding method on Ri (1 ≤ i ≤ M) to get a feature subset RSi (1 ≤ i ≤
M) and then combines {RS1, RS2, …, RSM} to return the selected features 
S. 

Accordingly, Algorithm 1 presents the pseudo-code of the ensemble 
feature selection method, where line 3 corresponds to the sampling step 
that gets M sampled datasets, line 4 is to use base feature selector for 
selecting features from each of the M datasets, and line 6 refers to the 
aggregation step. It is noteworthy that line 6 involves the procedures of 
aggregation and thresholding if a feature ranking method is used in line 
4. In following subsections, we introduce a feature subset selection al-
gorithm and two designed aggregators to instantiate the framework. 

Algorithm 1. Pseudo-code of ensemble feature selection

2.3. Base feature selector 

Correlation-based feature selection (CFS) is a filtering-based feature 
subset selection method [38]. In contrast to feature ranking methods, 
CFS does not require users to specify the number of finally selected 
features. On the basis of the statistical theory, CFS considers 
feature-feature relevance and feature-class relevance in evaluating the 
goodness of a feature f rather than only evaluating f individually and 
adopts a heuristic strategy to filter out irrelevant and redundant fea-
tures. Hence, we herein take CFS as the building block of the ensemble 
feature selection framework. 

Given a dataset with feature set F and labels Y, CFS uses the best first 
search to search the feature space according to the evaluation metric as 
given in equation (1). 

meritS =
prYf

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p + p(p − 1)rff

√ (1) 

Table 1 
Description of experimental datasets.  

Dataset #Genes #Samples #Classes #SGR Reference 

SRBCT 2308 83 (29/25/11/ 
18) 

4 0.036 Khan et al. [3] 

Colon 2000 62 (40/22) 2 0.031 Alon et al. [35] 
DLBCL 7129 77 (58/19) 2 0.011 Shipp et al. [36] 
Leukemia 5327 72 (38/9/25) 3 0.014 Golub et al. 

[37]  
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where meritS denotes the merit of feature subset S that contains p 
features, rYf is the average feature-class correlation between f ∈ S and Y, 
and rff is the average feature-feature correlation of S. When p = 1, meritS 
equals the correlation between feature f and Y. 

Specifically, CFS works as follows. 1) Initialize S to be empty. 2) 
Calculate the merit of each feature f in F according to equation (1), select 
f with the largest merit, add it to S, and delete it from F. 3) Select f ∈ F 
with the largest merit, add it to S, and delete it from F; if a higher merit is 
not obtained, delete f from S and then select f ∈ F with the largest merit; 
repeat this step until the stopping criterion is satisfied. CFS stops when F 
becomes empty or five consecutive searches of f fail to get a larger merit 

of S. 

2.4. Aggregation strategy 

The primary purpose of aggregation is to combine multiple feature 
subsets into one set. To improve the stability of finally selected features, 
we here take as the selection criterion the occurrence frequency of each 
feature f in multiple feature subsets. Specifically, given M sets {S1, S2, …, 
SM} returned by M base feature selectors, suppose U = ∪M

i=1 Si and pf 
denotes the frequency that f ∈ U appears in the M sets, we add f to S, if pf 
is not less than a predefined threshold γ, 

Fig. 1. Ensemble feature selection framework that mainly consists of three phases.  

Fig. 2. Flowchart of feature selection and validation. It mainly involves the procedures of feature selection, classifier training, and prediciton.  
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S={f |pf ≥ γ,  f ∈U} (2)  

where S keeps the selected features. Particularly, if γ = 1, S = ∩M
i=1 Ti is 

the interaction of the M sets; if γ = 0, S = ∪M
i=1 Ti contains the features 

that appear in at least one of the M sets. 
Besides, we can apply CFS on S to further optimize the feature space 

and derive a two-stage strategy (3). 

S = CFS(S1)

s.t.  S1 = {f |pf ≥ γ,  f ∈ U}
(3)  

2.5. Feature selection and validation 

2.5.1. Flowchart 
After selecting features from training data, we conduct a validation 

procedure by training a classifier with the selected features on the 
training data and testing its predictive power on a test set. Fig. 2 presents 
the corresponding framework, where the feature selection block aims to 
select a subset of features and we here use our proposed ensemble 
feature selection method. Notably, feature selection is only performed 
on the training set to avoid the selection bias problem and the dataset 
used to train the classifier is a projection of the training data over the 
selected features [39]. Classification performance metrics (e.g., 
misclassification errors and accuracy) are often used to indicate the 
validity of the selected features. 

2.5.2. Classification model 
Various classification models can be taken as the building block of 

Fig. 2 in training a classifier. We here adopt the following four 
commonly used classification models that have different metrics. For a 
given labeled training set Data and a test sample x, random forest (RF) 
uses a collection of decision trees to train a classifier and the prediction 
of x can be made using formula (4). 

l=max
li∈L

∑

prd∈RF
I(prd(x)  = =  li) (4) 

Naïve bayes (NB) calculates the posteriori probability of label li with 
formula (5) and determines the label with the maximum a posteriori 
(MAP) criterion. 

p(li|x)=
p(li)p(x|li)

∑

li
p(li)p(x|li)

, li ∈ L (5)  

where p(li) is the prior probability of label li and p(x|li) is the likelihood 
function. We can estimate p(li) and p(x|li) from Data. 

K-nearest-neighbor (KNN) is an instance-based non-parametric 
learning algorithm and determines the label of x based on the dominant 
label of its k closest neighbors from the training data. Specifically, let k 
be the number of nearest neighbors, nh(Data, x) be the k nearest 
neighbors to x and Y(nh) be the labels of the samples in nh, we can use 
formula (6) to predict the label l of x, 

l=max
li∈L

∑

nb∈nh(Data,x)

I(Y(nb)  = =  li) (6)  

where I(a = = b) is the indicator function and return 1 if a equals b. 
Support vector machine (SVM) has the superiority of handling high- 

dimensional data and aims to seek an optimal separating hyperplane 
that has a maximal margin between two classes by solving formula (7). 

{

min
1
2
||w||2 + λ

∑m

i=1
ξi

s.t.

yi[(w
Txi) + b] ≥ 1 − ξi, i = 1, 2, ...,m

ξi ≥ 0, i = 1, 2, ...,m

(7)  

where w and b are the hyperplane parameters to be learnt. 

3. Experiments and results 

3.1. Experimental setup 

Besides CFS and ensemble CFS, we take other six commonly used 
feature selection methods, including reliefF, mutual information maxi-
mization (MIM), minimum redundancy maximum relevancy (MRMR), 
conditional mutual information maximization (CMIM), joint mutual 
information (JMI), and fast correlation-based filter (FCBF) as the com-
petitors. Specifically, for feature ranking methods (i.e., reliefF, MIM, 
MRMR, CMIM, and JMI), we experimentally choose the top twenty-five 
features. CFS and FCBF belong to feature subset selection methods and 
there is no need to specify the number of selected features. For the 
ensemble feature selection method, five-fold cross validation is applied 
on the training set to obtain multiple sampling datasets and CFS is used 
to select multiple subsets of features. Then, we use the two proposed 
aggregation strategies to get the finally selected features. 

To test the stability of a feature selection method to the change of 
experimental data, the stratified ten-fold cross validation is used to 
generate perturbated training data and to get independent training and 
test sets. That is, the microarray dataset is partitioned into ten folds, 
where each one of the ten folds is used as a test set and the remaining 
folds are used as the training set. We then get ten pairs of training set and 
test set and finally report the average of the ten runs. 

3.2. Evaluation metric 

3.2.1. Classification metric 
Predictive power and stability are two critical metrics in evaluating a 

feature selection algorithm. For the former, classification performance is 
often used to indicate the predictive ability of selected features and we 
here take accuracy and F1 as the metrics. 

accuracy=
∑|L|

i=1
Ti

/
∑|L|

i=1
NTi

(8)  

precision=
1
|L|

∑|L|

i=1

Ti

NPi
(9)  

recall=
1
|L|

∑|L|

i=1

Ti

NTi
(10)  

F1=
2*precision*recall
precision + recall

(11)  

where Ti is the number of samples correctly classified as li, NPi is the 
number of samples classified into li, and NTi is the number of samples 
labeled as li. 

To avoid the classifier selection bias, we here use NB, KNN, SVM, and 
RF to measure the goodness of selected features. Nearest neighbor is 
used for KNN and RF consists of five decision trees. For SVM, we use the 
linear kernel and default parameter values in LIBSVM and also use one- 
against-one strategy to handle the multi-class problem for SVM. 

3.2.2. Stability metric 
Stability measures the robustness of a feature selector to the change 

of training data. There are different ways of perturbating the training 
data and we here use Q-fold cross validation to return Q feature subsets 
and to measure the similarity of the Q sets. Algorithm 2 shows the 
corresponding pseudo-code, where line 2 obtains the ith training set TRi 
of the Q-fold cross validation, line 3 conducts feature selection on TRi 
and gets a subset of features Si, and line 5 calculates the stability scores 
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sidx of the Q subsets. As for the stafbility metric ψ , Jaccard, adjusted 
similarity (SimL), and relative weighted consistency (CWrel) that have 
different statistical criteria are used to get sidx [30]. The larger the value 
sidx is, the more stable the corresponding feature selector is. Specifically, 
CWrel utilizes the frequency of each selected feature in the Q sets to 
calculate sidx, where Jaccard and SimL calculate the average similarity of 
the Q subsets. Given Q sets A = {S1, S2, …, SQ}, Jaccard index is obtained 
using equation (12), 

ψJaccard(A)=
2

Q(Q − 1)
∑Q− 1

i=1

∑Q

j=i+1

|si ∩ sj|

|si ∪ sj|
(12)  

where ∩ and ∪ denotes the intersection and union between two sets, 
respectively. SimL is obtained using equation (13), 

ψSimL
(A)=

2
Q(Q − 1)

∑Q− 1

i=1

∑Q

j=i+1

|si ∩ sj| − E(|r|)
max(|r|) − min(|r|)

(13)  

where r equals the intersection of si and sj, |r| is the cardinality of r, and E 
(|r|), max(|r|), and min(|r|) are the expectation, maximum, and mini-
mum of |r|, respectively. 

CWrel is calculated using equations (14) and (15). For extra details, 
we refer to Ref. [30]. 

ψCWrel
(A)=

CW(A) − CWmin

CWmax − CWmin
(14)  

CW(A)=
∑

f∈F
pf

pf − pmin

pmax − pmin
(15)  

where pmin (pmax) is the minimum (maximum) frequency of f ∈ F and 
CWmin (CWmax) is the minimum (maximum) of CW(A). 

Algorithm 2. Stability calculation   

3.3. Experimental results 

As discussed in subsection 2.4, different threshold values γ can be 
used to combine multiple sets into one set. We herein choose 1, 0.75, 

0.5, 0.25, and 0, and get corresponding feature selection algorithms 
enCFSI, enCFST, enCFSH, enCFSQ, and enCFSU. For example, γ = 0 cor-
responds to enCFSU that returns the union of multiple sets and γ = 1 
(enCFSI) gets their intersection. Besides, we apply CFS on the result of 
enCFSU and name the method enCFS2. It is worth noting that the feature 
subsets returned by enCFSI and enCFST are empty in our experiments, 
indicating the sensitivity of CFS to the change of training set. We thus 
leave out corresponding results. 

3.3.1. Classification performance 
Tables 2–5 present the classification accuracy and F1 of the eleven 

feature selection algorithms when NB, KNN, SVM, and RF are used as 
classification models, respectively. The third column “w/o” lists the 
results without using feature selection method and the last four columns 
correspond to the results of ensemble CFS. For each dataset, the best 
classification accuracy is shown in bold and we underline the result of 
ensemble CFS if it is higher than that of CFS. From Tables 2–5, we 
observe that CFS selects a subset of high-quality features and obtains 
comparable classification accuracy to reliefF, MIM, MRMR, CMIM, JMI, 
and FCBF. For example, in terms of NB on Colon, CFS achieves 82.26% 
accuracy, compared to the 85.48%, 82.26%, 82.26%, 83.87%, 82.26% 
and 80.65% of its competitors; on SRBCT, CFS has 98.8% accuracy, 
while the accuracies of reliefF, MIM, MRMR, CMIM, JMI, and FCBF are 
91.57%, 98.80%, 98.80%, 96.39%, 97.59% and 98.80%, respectively. 
Second, when comparing CFS and its ensembles, we observe that the 
ensemble methods could obtain comparable or even better performance. 
For enCFSH, enCFSQ, enCFSU, and enCFS2, we observe that enCFSH 
generally obtains higher accuracy in most cases. For example, if using 
NB, enCFSH achieves the highest accuracy on Colon and SRBCT and 
obtains the second-best accuracy on DLBCL and Leukemia; if using SVM, 
enCFSH obtains the best accuracy on Colon and Leukemia. This is mainly 
because enCFSH uses a majority voting-based aggregation strategy that 
helps preserve informative features while filtering out the randomly 

selected features due to data perturbation. Besides, we observe that 
there are cases on DLBCL and SRBCT that the classification accuracy of 
the original features is slightly higher than that of using feature selec-
tion. This is possible because DLBCL and SRBCT exhibit distinct 
expression patterns of different classes and a classification model can 
make, but does not guarantee across different models, good predictions. 

Table 2 
Experimental results of different feature selection methods with NB.  

Dataset Metric(%) w/o reliefF MIM MRMR CMIM JMI FCBF CFS enCFSH enCFSQ enCFSU enCFS2 

SRBCT Accuracy 100.0 91.57 98.80 98.80 96.39 97.59 98.80 98.80 100.0 98.80 98.80 98.80 
F1 100.0 90.55 98.20 98.20 96.34 97.24 99.09 99.09 100.0 99.09 98.44 99.09 

Colon Accuracy 58.07 85.48 82.26 82.26 83.87 82.26 80.65 82.26 85.48 83.87 85.48 82.26 
F1 61.02 84.01 81.37 81.37 83.39 81.37 80.71 81.37 84.81 83.39 84.81 81.37 

DLBCL Accuracy 79.22 92.21 89.61 90.91 96.10 89.61 89.61 90.91 92.21 92.21 92.21 93.51 
F1 71.09 89.52 87.28 88.01 94.88 87.28 85.41 87.58 89.24 89.52 89.52 91.44 

Leukemia Accuracy 98.61 91.67 94.44 95.83 94.44 97.22 95.83 93.06 95.83 95.83 97.22 93.06 
F1 97.70 86.06 90.38 92.90 91.75 95.42 92.90 89.25 92.90 92.90 95.42 89.25  
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Previous studies have also reported similar results [7,19,40]. Even so, 
we can observe that feature selection helps obtain stable prediction 
performance across different classifiers and serves for downstream 
biological interpretation, which, to a certain extent, indicates the ne-
cessity and power of feature selection methods. 

3.3.2. Number of selected genes 
We then investigate the selected features. Table 6 shows the mean 

and standard deviation of the number of selected features for CFS and 
ensemble CFS on each dataset. From Table 6, we can observe that CFS, 
enCFSH, enCFSQ, enCFSU, and enCFS2 select a small number of features 
from the original feature space, which greatly reduces its dimensionality 
and helps mitigate overfitting. Taking the Colon with 2000 genes as an 
example, CFS selects average of 24 genes, enCFSH selects 12 genes on 
average, and enCFSU selects 75 genes. Second, we observe that enCFSH 
obtains a feature subset of smaller size and smaller standard deviation 
than CFS. For example, the average number of selected features of 
enCFSH on Colon, DLBCL, Leukemia, and SRBCT are 11.7, 10.4, 45.3, and 
72.8, respectively, compared to the 23.8, 42.7, 91.1, and 116.7 of CFS. 

This is possible because the use of occurrence frequency could discard 
the features sensitive to the change of training data. Third, we also 
observe that for enCFSH, enCFSQ, and enCFSU, the number of finally 
selected features increases as the threshold γ decreases. For example, on 
SRBCT, enCFSH selects 72.8 features, enCFSQ, selects 120.6 features, and 
enCFSU selects 241.6 features. This is mainly because the decrease of γ 
tends to keep features that have low occurrence frequency. Fourth, 
compared with enCFSU and enCFS2, we observe that enCFS2 obtains a 
feature subset of smaller size, which indicates that there exists redun-
dancy among features selected by enCFSU. For example, the average 
number of selected features for enCFS2 on SRBCT is 105.2 compared to 
the 241.6 of enCFSU. 

Afterwards, we preliminarily investigate the selected genes by 
enCFSH. Without loss of generality, we here present the results on Colon 
as an example [35], as shown in Table 7. We observe that the selected 
genes have a role in the biological process. 

3.3.3. Stability scores 
In this section, we compare the stability of CFS and its ensembles, 

Table 3 
Experimental results of different feature selection methods with KNN.  

Dataset Metric(%) w/o reliefF MIM MRMR CMIM JMI FCBF CFS enCFSH enCFSQ enCFSU enCFS2 

SRBCT Accuracy 84.34 91.57 98.80 100.0 95.18 100.0 98.80 100.0 98.80 97.59 100.0 98.80 
F1 85.21 91.36 99.08 100.0 95.31 100.0 99.08 100.0 99.08 98.14 100.0 99.08 

Colon Accuracy 82.26 75.81 79.03 79.03 82.26 80.65 75.81 80.65 85.48 82.26 83.87 80.65 
F1 80.45 72.57 76.88 76.88 81.37 78.28 73.86 78.86 84.01 80.20 82.10 78.50 

DLBCL Accuracy 80.52 88.31 83.12 98.70 94.81 96.10 97.40 90.91 92.21 97.40 93.51 92.21 
F1 74.27 83.62 79.54 98.25 93.01 94.69 96.51 88.59 89.52 96.51 91.92 89.97 

Leukemia Accuracy 84.72 91.67 93.06 93.06 94.44 95.83 94.44 93.06 95.83 94.44 94.44 93.06 
F1 84.29 89.70 90.28 91.95 94.17 95.66 93.27 90.78 94.34 91.83 94.43 90.70  

Table 4 
Experimental results of different feature selection methods with SVM.  

Dataset Metric(%) w/o reliefF MIM MRMR CMIM JMI FCBF CFS enCFSH enCFSQ enCFSU enCFS2 

SRBCT Accuracy 100.0 95.18 98.80 100.0 95.18 98.80 96.39 98.80 98.80 98.80 98.80 98.80 
F1 100.0 94.96 99.08 100.0 95.65 99.08 97.22 99.08 99.08 99.08 99.08 99.08 

Colon Accuracy 83.87 80.65 79.03 79.03 72.58 75.81 79.03 79.03 88.71 80.65 72.58 83.87 
F1 82.10 78.50 77.35 77.35 71.06 74.50 78.63 76.88 87.82 78.86 69.23 82.39 

DLBCL Accuracy 96.10 93.51 92.21 96.10 96.10 96.10 94.81 94.81 94.81 96.10 97.40 93.51 
F1 94.69 91.14 89.52 94.88 94.69 94.88 92.87 93.01 93.01 94.69 96.51 91.44 

Leukemia Accuracy 95.83 91.67 94.44 94.44 95.83 95.83 95.83 95.83 95.83 93.06 95.83 95.83 
F1 95.50 89.40 91.97 94.29 94.09 95.66 94.34 94.34 93.28 89.51 95.50 94.34  

Table 5 
Experimental results of different feature selection methods with RF.  

Dataset Metric(%) w/o reliefF MIM MRMR CMIM JMI FCBF CFS enCFSH enCFSQ enCFSU enCFS2 

SRBCT Accuracy 87.95 92.77 89.16 93.98 92.77 97.59 90.36 89.16 91.57 95.18 93.98 96.39 
F1 88.95 94.22 87.56 94.61 93.54 97.98 90.62 88.96 92.84 95.48 94.21 96.47 

Colon Accuracy 75.81 80.65 82.26 80.65 83.87 82.26 82.26 79.03 82.26 82.26 83.87 80.65 
F1 72.89 78.50 80.45 78.50 82.10 80.20 80.20 77.35 80.45 80.45 82.10 78.28 

DLBCL Accuracy 81.82 89.61 87.01 92.21 88.31 92.21 88.31 89.61 92.21 92.21 88.31 92.21 
F1 74.72 85.41 81.98 89.18 83.62 89.42 83.41 85.61 89.24 89.18 83.62 89.24 

Leukemia Accuracy 80.56 87.50 90.28 88.89 91.67 91.67 90.28 91.67 93.06 94.44 88.89 88.89 
F1 76.22 83.47 86.31 86.18 89.39 90.99 85.03 91.00 91.71 94.29 87.33 85.73  

Table 6 
Number of selected features (mean ± standard deviation).  

Dataset CFS enCFSH enCFSQ enCFSU enCFS2 

#avg #std #avg #std #avg #std #avg #std #avg #std 

SRBCT 116.7 8.4 72.8 4.3 120.6 9.7 241.6 9.7 105.2 7.4 
Colon 23..8 4.2 11.7 2.8 24.3 2.9 74.9 7.9 21.4 3.7 
DLBCL 42.7 5.2 10.4 1.9 28.7 3.2 179.6 13.0 34.7 4.4 
Leukemia 91.1 6.0 45.3 3.8 82.9 6.9 231.4 8.3 77.9 5.6  
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including enCFSH, enCFSQ, enCFSU, and enCFS2. Fig. 3 presents corre-
sponding results, where the X-axis denotes the stability metrics (i.e., 
Jaccard, SimL, and CWrel) and the Y-axis refers to stability scores. The 
higher the scores are, the more stable the feature selector is. From Fig. 3, 
we observe that the relative numerical relations of the five compared 
methods are stable across Jaccard, SimL, and CWrel, which indicates the 
feasibility of the three metrics in measuring the similarity of multiple 
sets. Second, ensembled CFS versions generally has better stability in 
most cases and enCFSH obtains better stability scores across datasets. For 
example, on Leukemia, enCFSH gets the scores of 0.3687, 0.5577, and 

0.539 for Jaccard, SimL, and CWrel respectively, which outperforms the 
corresponding 0.3598, 0.5318, and 0.5285 of CFS. Third, we observe 
that enCFS2 has higher stability scores than enCFSU. This is mainly 
because enCFS2 conducts a further feature selection to discard redun-
dant and irrelevant features, which helps stabilize the results of feature 
selection. 

Furthermore, considering that accuracy and stability are two key 
factors in evaluating a feature selector, we plot their relationships to 
direct the choice of feature selection methods. Fig. 4 shows the accuracy 
vs. 

stability results of CFS and its ensembles, where the X-axis denotes 
the accuracy of SVM and the Y-axis is the SimL scores. Fig. 4 clearly 
shows that enCFSH generally achieves a better tradeoff between accu-
racy and stability. Particularly, we observe that enCFSH consistently 
outperforms CFS on all datasets. Similar results can be observed for 
other stability metrics and classifiers. 

4. Discussions 

Accurate and stable feature selection from microarray gene expres-
sion data is of paramount importance to the classification of cancers and 
tumors and the identification of indicative biomarkers. Considering that 
a feature selection method is usually sensitive to the change of training 
data, we in this study develop a new feature selection framework under 
the ensemble learning paradigm. We conducted extensive experiments 
on public microarray datasets and achieved better classification accu-
racy and stability than the non-ensemble (see Figs. 3 and 4). Moreover, 
the proposed enCFSH further optimizes the feature space and selects a 
feature subset of smaller size than its competitors, while maintaining 
stability and discriminant ability (see Table 5). Besides, we investigate 
the selected features from the view of biological knowledge. The results 
described in Table 6 illustrates that the selected genes play a role in the 
biological process. 

Previous approaches for selecting a subset of features using a group 

Table 7 
Selected genes and their description.  

Gene 
number 

Description Gene 
number 

Description 

R28373 Human calmodulin mRNA, 
complete cds. 

R36977 P03001 transcription factor 
IIIA 

K03460 Human alpha-tubulin 
isotype H2-alpha gene, last 
exon 

R84411 Small Nuclear 
Ribonucleprotein 
associated proteins B and B’ 
(human) 

Z50753 H. sapiens mRNA for 
GCAP-II/uroguanylin 
precursor 

M36634 Human vasoactive 
intestinal peptide (VIP) 
mRNA, complete cds. 

H40560 Thioredoxin (human) H08393 Collagen alpha 2(XI) 
CHAIN (Homo sapiens) 

R87126 Myosin heavy chain, 
nonmuscle (Gallus gallus) 

M26383 Human monocyte-derived 
neutrophil-activating 
protein (MONAP) mRNA, 
complete cds. 

X12671 Human gene for 
heterogeneous nuclear 
ribonucleoprotein (hnRNP) 
core protein A1 

J02854 Myosin regulartory light 
chain 2, Smooth muscle 
isoform (human); contains 
element TAR1 repetitive 
element M76378 Human cysteine-rich 

protein (CRP) gene, exons 5 
and 6  

Fig. 3. Comparisons of stability scores. Three different stability metrics are used for fair comparisons.  
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of feature selection methods mainly face the problem of thresholding 
and aggregation. That is, users have to decide how many features to keep 
for feature ranking methods [25] and specify the order of performing 
thresholding and aggregation. Since the two procedures are optimized 
individually, a sub-optimal solution is usually obtained [33]. This also 
expects an end-to-end solution towards enhanced performance. In 
contrast, our proposed method can automatically return the finally 
selected features, which largely relieves users from the issue. Experi-
mental results also demonstrated its effectiveness and flexibility. 

One limitation of the proposed method is that it has higher time 
complexity than traditional methods, since the proposed ensemble 
feature selection method is a collection of base feature selectors. The 
complexity of a base feature selection method is mainly determined by 
the number of samples m and the number of features n, and we note it as 
h(m, n) for general analysis. Suppose the ensemble feature selection 
method consists of M base feature selectors and the maximal cardinality 
of the M selected subsets is d (d ≪ n), the corresponding time complexity 
is O(M* h(m, n) + M*d) ≈ O(M* h(m, n)), where O(M* h(m, n)) is 
associated with M base feature selection methods and O(M*d) is related 
to aggregation. One feasible way to reduce the time complexity is to 
distribute the base feature selection tasks to multiple computers or 
servers (such as M machines) using parallel computing. Hence, the time 
complexity is reduced to O(h(m, n) + M*d). 

5. Conclusions 

The small-sample-size and high-dimensional microarray data pose a 
great challenge to the identification of indicative biomarkers and the 
training of a powerful classifier. Although gene selection remains a 
priority to mitigate the problem, most of existing methods have poor 
stability and the selected features are sensitive to the change of training 
data. Accordingly, accurate and stable feature selection plays a critical 
role in the analysis of gene expression profiles and would help 

researchers to conduct downstream biological analysis. To this end, we 
herein propose an ensemble feature selection framework that can return 
a discriminating and stable subset of features. We then present two ag-
gregation strategies for combining multiple sets into one set and intro-
duce three stability metrics (including Jaccard, SimL and CWrel) and two 
classification performance metrics (i.e., accuracy and F1) towards an 
unbiased evaluation of a feature selection method. Finally, we conduct 
comparative experiments on public microarray datasets that cover both 
binary and multi-class cases. Results demonstrate the superiority of the 
proposed method over its competitors in terms of classification perfor-
mance and stability. 

For future work, we plan to work in the following directions. First, 
aggregation strategy plays a central role in the ensemble feature selec-
tion method. We currently only use frequency information to design the 
aggregation strategy and ignore the relative importance of features, 
which motivates us to explore weighted aggregation strategies for 
further study. Second, the proposed framework is a general one, and we 
can take as the building blocks other base feature selection algorithms. 
However, this would raise new issues related to hyperparameter opti-
mization such as how many features to keep (i.e., the thresholding 
problem) and how to combine the ranked features (i.e., the aggregation 
problem) [33,41]. This deserves a systematic and comprehensive study 
for practical guidelines. Third, we can apply the proposed method to 
RNA-seq and metagenome omics data and research fields to better un-
cover underlying mechanisms [42–44]. 
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