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Abstract—The recognition of human activities plays a central 
role in bridging the gap between the raw sensor signals and 
high-level pervasive applications. However, the complex nature
of human behavior presents a great challenge to the choice of
representative features and a discriminant classification model
and further makes it quite difficult to develop an accurate and 
robust activity recognizer. Random forest benefits from the 
idea of bootstrap and random feature sampling, while only
preliminary experimentation for simple activity recognition 
has been previously reported and few studies, as far as we 
know, have comprehensively and systematically discussed its
performance, especially in wearable-based complex activity
recognition. The objective of this study is to present the first
empirical results obtained with random forest and to compare 
its performance with other commonly used prediction models
and dimensionality reduction methods. We conduct extensive
comparative experiments on three benchmarked datasets. The 
results indicate the superiority of random forest-based activity
recognizers over five individual classifiers, three ensemble
models, one feature extractor as well as two feature selectors in 
terms of recognition performance across scenarios. Besides, the 
parameter sensitivity analysis recommends the default setting
for the parameters and the time cost analysis indicates its 
applicability to practical applications.

Keywords-Complex activity recognition; ensemble learning;
random forest; feature selection; generalization

I. INTRODUCTION

The rapid development of sensing technologies, internet 
of things, and artificial intelligence has greatly advanced the 
pervasive computing and further facilitated the in-depth
understanding of human behavior and the smart provision of
various application services that range from smart home and
ambient assisted living to healthcare, wellness evaluation,
and among others [1]. Accordingly, how to accurately and 
automatically recognize human activities plays a central role 
in bridging the gap between the raw sensor signals and high-
level activity semantics [2]. However, the complex nature of 
human behavior makes it difficult to develop an accurate and 
robust activity recognition model [3].

Compared with the traditional classification tasks such as
web mining and image recognition, activity recognition faces

challenges from the data, the modelling and evaluation, and 
also human behavior itself. The typical challenges of human
activity recognition are given as follows [3, 4].

1) Interleaved and concurrent activity execution. Besides 
performing activities sequentially, one can switch between 
the steps of two or more activities and can simultaneously do
two or more activities, which presents a complex issue.

2) Inter-subject and intra-subject variations. Different 
individuals probably perform the same activity differently
and even an individual may perform an activity in a different 
way at different places and times. Particularly, human 
behavior may change over time. This would also degrade the 
generalization performance of an activity recognizer. 

3) Confusion between similar activities. For a specific
application, there may exist predefined activities that have
similar sensor readings, which would potentially reduce the 
group discrimination and result in degraded accuracy.

Therefore, how to accurately and automatically recognize 
on-going human activities is a challenging but rewarding
topic that deserves further investigation [4, 5].

Accordingly, researchers have been exploring different
types of sensing units and proposed a number of activity
recognition models. We can broadly group existing methods 
into three categories based on the sensing units: environment
sensor-based, vision-based, and wearable sensor-based 
methods [4, 6]. Particularly, the miniature and increasing 
processing and communication power of sensing units makes
it possible for an individual to simultaneously take multiple 
heterogeneous or homogeneous sensing devices. Wearable
sensor-based methods are also suitable for both outdoor and 
indoor scenarios and have advantages of low costs and
portability. For activity recognition models, researchers have
used generative models, discriminant models, unsupervised 
learning models, and ensemble models. To better handle the 
complexity of human behavior, one feasible solution is to 
utilize ensemble learning that typically combines multiple 
base classifiers. Particularly, random forest, an ensemble of 
decision trees, generally obtains satisfactory prediction
performance and is robust to noise and outliers in multiple
domains. Preliminary experimentation on simple activity 
recognition has been previously reported [7], while few 
studies have systematically and comprehensively made an
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empirical evaluation in the context of wearable-based 
complex activity recognition on several aspects. For example,
how does it perform when compared with other widely used
individual classification models and ensemble learning
models? How does it perform in comparison with the feature 
selection and feature extraction methods? What are the 
empirically recommended default values for its parameters
(e.g., the number of used trees and the number of features
randomly selected at each node of a tree)? Is the random 
forest-based activity recognizer suitable for wearable
devices that have limited resources? Herein, we aim to 
systematically study the random forest-based activity 
recognizer and compare it with commonly used models. This 
work, as far as we know, is the first to conduct an extensive 
empirical evaluation on this topic. Particularly, the main 
contributions of this study are as follows. (1) We present the
random forest-based activity recognizer under the framework
of activity recognition chain, where we detail its components
and discuss its mechanism in returning an accurate and 
diverse set of trees. (2) We conduct extensive experiments on
three datasets and compare it with five individual classifiers,
three ensemble learning methods, and two feature selectors 
and one feature extraction method. The comprehensive suite 
of experiments shows its superiority over its competitors. (3)
The results of parameter sensitivity analysis indicate the 
recommended empirically values of the parameters. Besides, 
we initially analyze its time costs in making predictions,
which indicates its applicability to practical applications.

The reminder of this paper is organized as follows. In
Section II, we briefly discuss related work on sensors and 
activity recognition model. Section III presents the wearable-
based activity recognition framework. Experimental results 
are given in Section IV, followed by the conclusion section.

II. RELATED WORK

Researchers have used different types of sensing units 
and presented a large number of activity recognition models. 
Generally, we can divide them into three groups according to 
the used sensing units: vision-based, environment sensor-
based, and wearable-based methods. Compared with the
vision-based methods that utilize a camera to capture and
detect human activities and the environment sensor-based
methods that infer the on-going activity by placing sensing 
units on household objects and capturing the interaction 
between an individual and the environment [6, 8], wearable-
based methods record the sensor signals and recognize 
activities from them when one performs activities. Benefiting
from the miniature and ever-increasing processing and 
communication power of sensing units, they have advantages
of a high degree of portability, low costs, and a wide range of 
applications. Representative wearable sensing units include,
but not limited to, gyroscope, accelerometer, temperature and 
light sensors, electrocardiograph, and radio frequency 
identification (RFID) [9, 10, 11]. Particularly, one could take 
multiple sensing units on different parts of the human body.
For example, Zappi et al. collected the sensing data of ten 
manipulative gestures from a car maintenance assembly-line 
worker, where 2x10 USB sensors with accelerometers were 
worn on the left and right upper and lower arm [12]. Kim et 

al. developed an RFID-based healthcare monitoring system, 
which used the RFID tags to detect the location and activities 
of the elderly [10]. Besides, there are researches that
simultaneously use different types of sensing units for 
activity recognition. For example, Wang et al. exploited the 
accelerometer and gyroscope in a smartphone to train an 
activity recognizer [2]. Results show that the fusion of both 
accelerometer and gyroscope data leads to higher accuracy 
than the case with single source data.

As for the activity recognizers, there are a wealth of
models and we can broadly group them into knowledge-
driven and data-driven methods. Compared with knowledge-
driven methods that heavily rely on an abstract model of
domain knowledge (e.g., logical modelling, reasoning, and
ontology) to define the activity specification, data-driven 
methods use the sensor data to construct and optimize an 
activity recognizer and then use it to make predictions.
Accordingly, researchers have used many classification
models that include generative methods (e.g., hidden Markov 
model and naïve Bayes), discriminant methods (e.g., support 
vector machine and decision tree), unsupervised learning 
methods, and ensemble learning methods (e.g., boosting,
bagging, and stacking). For example, Wang et al. utilized
naïve Bayes and k-nearest-neighbor to train activity 
recognizers [2]. Zappi et al. trained a hidden Markov model-
based activity recognizer [12]. Xu et al. used the random 
forest to recognize six simple activities (walking, go-upstairs,
go-downstairs, jump, run, and static) [7]. Feng et al. 
proposed a random forest-based ensemble to recognize 
human activities [13]. As an ensemble model, random forest
tends to obtain satisfactory performance and is robust to
noise and outliers. Previous researches have used it for 
simple human activity recognition, while few studies, to our 
knowledge, have systematically and comprehensively 
studied its performance and there is no related work that
empirically recommends the default values of its values for 
complex activity recognition. In this study, we present the 
first work that systematically investigates its performance
and addresses related issues on this topic. Specifically, we 
compare it with other widely used classification models
(including five individual classifiers and three ensemble 
methods) and three feature reduction methods (i.e., principal 
component analysis, reliefF, and minimum-redundancy 
maximum-relevancy), and evaluate its sensitivity to the 
parameter values and time costs in making predictions. This 
study is expected to guide users in choosing and optimizing a
robust activity recognizer for practical application scenarios. 

III. ACTIVITY RECOGNITION FRAMEWORK

Wearable sensor-based activity recognition systems work 
by first recording sensor recordings during the on-going 
activities and training an activity recognizer offline and then 
using it to infer the activities. Fig. 1 presents the typical
activity recognition chain (ARC), which mainly includes 
four stages to get an activity recognizer. First, the streaming 
raw sensor signals are collected and segmented with a static
or dynamic sliding window with/without overlap between 
two adjacent segments. Second, we extract the time domain,
frequency domain, and time-frequency features, such as
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Figure 1. Wearable-based activity recognition chain.

mean, standard deviation, maximum, minimum, cross zero
rate, entropy, signal magnitude area, autoregression 
coefficients, energy and correlation coefficient from each 
segment to form the feature vector. Third, we use feature 
extraction and feature selection methods to reduce the feature 
space by removing irrelevant and redundant features or 
projecting the original data into a low-dimensional space. It
is noteworthy that this step is optional. Fourth, we train an 
activity recognizer with the training set. Afterwards, in the 
prediction phase, the test sensor data are first segmented
using the same processing techniques as the training phase,
features as those used in the training phase are extracted 
from the segment to return a feature vector, and then the 
activity recognizer outputs the corresponding activity label.

Random forest is an ensemble of unpruned classification 
trees and uses the majority voting rule to make predictions. It
has advantages of getting satisfactory results and robustness
to noise and outliers. The key to returning a set of diverse 
base classifiers is to randomly select bootstrap samples from 
the training set and to randomly get a feature subset at each 
node of each tree. We present the pseudo-code of random 
forest-based activity recognizer in Algorithm 1, where
numTrees means the number of trees and numFeatures refers 
to the number of features to sample for each tree node. As 
for the ARC, a random forest is trained in step 4 of the 
training phase and used to classify test samples in the 
prediction phase. That is, it is a component of the ARC.

Algorithm 1: Random Forest-based Human Activity Recognition
Model
Input: a train set D with activity labels, parameters numTrees,
numFeatures, test set x
Output: the activity label lx of x
// construct the random forest-based activity recognizer
1. for i = 1: numTrees do

1.1) randomly bootstrap a dataset Di from D, and |Di| = |D|
       1.2) construct a Tree Ti on Di, where numFeatures features are 
randomly selected for each node

     1.3) RF.add(Ti) // add Ti to the forest RF
// predict the label of x
2. lx = RF(x); // aggregate the votes of all trees Ti

3. return lx

IV. EXPERIMENTAL SETTING AND RESULTS

A. Experimental Setting
In this study, we perform extensive experiments on three

publicly available datasets for activity recognition. Table I 
presents the activities of interest. PAMAP has six human 
activities and PAMAP2 contains fifteen activities [14]. Both

TABLE I. EXPERIMENTAL DATA DESCRIPTION

Dataset Activities of Interest

PAMAP lie, sit/stand, walk, run, cycle, Nordic walk

PAMAP2
stand, lie, sit, walk, run, cycle, Nordic walk, ascending
stairs, descending stairs, fold laundry, rope jump,
vacuum clean, iron, play soccer, clean house

SkodaMiCP

open hood, close hood, open left front door, check gaps
on the front, open and close trunk, check trunk gaps,
close both left doors, close left front door, checking 
steering wheel, write on notepad

are obtained by asking nine subjects wearing one heart rate 
monitor and three inertial measurement units (IMU) to do
activities. The sampling frequency of the IMU is 100 Hz and
the sampling rate of the heart rate monitor is 9 Hz. The data 
is processed using a sliding window of 5.12 seconds with a
shifting of 1 second. The third dataset SkodaMiCP consists 
of the sensor signals of ten manipulative gestures of a car 
maintenance assembly-line worker, who wore sensors on the 
right and left lower and upper arm [12]. It was collected for 
about 3 hours. Each sensor is a 3-axis accelerometer that has 
a 64 Hz sampling rate. The sensor data were segmented by a 
1s sliding window with 50% overlap between two adjacent 
segments. For the three datasets, time-domain, frequency-
domain and time-frequency domain features, such as mean,
maximum, minimum, variance, skewness, 25th percentile, 
and 75th percentile, are extracted from the segments to form 
a feature vector.

Besides using random forest (RF), we explore other five
individual models having different metrics (i.e., k nearest 
neighbor with k = 1 (1NN) and k = 3 (3NN), naïve Bayes 
(NB), support vector machine with linear kernel (SVM), and 
decision tree (DT)), as well as three ensemble methods (i.e., 
AdaBoost, Bagging, and Subspace learning). RF essentially
utilizes bagging (bootstrap sample) and the random subspace 
method (random feature selection) to construct randomized 
trees. Furthermore, we include three dimensionality 
reduction methods as a comparison. Principal component
analysis (PCA), a feature extractor, projects the high-
dimensional data into a new lower dimensional subspace.
The reliefF individually evaluates the goodness of each 
feature and ranks the features based on the concepts of near-
hit and near-miss. The minimum redundancy maximum
relevancy (mRMR) captures the higher-order statistics and
considers redundancy among features.

For the performance metrics, five-fold cross validation is 
used and we use accuracy and F1 to evaluate the activity
recognizers. F1 is the harmonic mean of recall and precision
to deal with class imbalance, as given in (1).

2* *1 precision recall
F

precision recall
.  (1)

B. Comparison with Other Classifiers
We first compare the RF-based activity recognizer with

other five individual classifiers (i.e., NB, 1NN, 3NN, SVM, 
and DT) and three ensemble classifiers (i.e., AdaBoost, 
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Bagging, and Subspace). For AdaBoost and Bagging, we use 
the decision tree as the base classifiers. For the subspace 
learning, we use KNN as the base classifier. The number of 
base classifiers of the ensemble model equals that of the used 
random forest. According to our preliminary experimental 
results, in this study, the number of trees numTrees is 50 and 
the number of features numFeatures equals the square root
of the total number of features. Figs. 2 and 3 present results.
We observe that RF-based activity recognizer generally 
outperforms its competitors on all the datasets. Particularly,
compared with AdaBoost, Bagging and Subspace, RF-based 
activity recognizer performs better, which is mainly because 
of the simultaneous sampling of both samples and features.
Obviously, this contributes to the return of a set of accurate 
and diverse base classifiers of a random forest. Furthermore, 
we notice that the use of ensemble methods may fail to 
obtain satisfactory results. For example, AdaBoost obtains 
the 61.46% accuracy on the PAMAP, which is lower than the 
99.17%, 97.89%, and 97.61% accuracy of NB, 1NN, and 
3NN, respectively. Among the five individual classifiers, we
see the performance of SVM is unstable across applications
and DT remains a priority.

C. Comparision with Dimensionality Reduction Methods
In this subsection, we compare the RF-based activity

recognizer with three feature reduction methods (i.e., PCA, 
reliefF, and mRMR). For PCA, we choose to keep 99.0% of 
the total variance. Both reliefF and mRMR belong to feature 
ranking methods, and we experimentally select the top
twenty-five features to return an optimal feature subset. 
Since PCA, reliefF, and mRMR are filter methods, we use a
classification model to evaluate the finally obtained feature 
subset. We herein utilize the widely used NB, 1NN, and 
SVM. Particularly, for each of the feature reduction methods,
we combine it with the models under the framework of Fig. 
1. Accordingly, Fig. 4 presents the experimental results on 
the three datasets. The X-axis indicates different methods
and fs(cls) refers to the use of feature reduction method fs
and classification model cls. The Y-axis shows the accuracy. 
From Fig. 4, we observe that RF-based activity recognizer
performs better than its competitors on all the three datasets. 
Specifically, the random forest obtains 100%, 98.74%, and 
97.16% accuracy on the three datasets, respectively. For the 
three feature reduction methods, they obtain mixed results. 
For example, reliefF(SVM) gets the best accuracy of 98.46%
on PAMAP, mRMR(NB) has the best accuracy of 82.64% on 
PAMAP2, and reliefF(KNN) obtains the best accuracy of

(a) PAMAP (b) PAMAP2 (c) SkodaMiCP
Figure 2. Comparison of accuracy with other five individual classifiers and three ensemble methods.

(a) PAMAP (b) PAMAP2 (c) SkodaMiCP
Figure 3. Comparison of F1 with other five individual classifiers and three ensemble methods.
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92.75% on SkodaMiCP. For PCA, reliefF, and mRMR, the 
results show the priority of reliefF. Furthermore, according
to Fig. 2 and Fig. 4, we see that the use of feature selection
and extraction methods fails to consistently obtain improved 
accuracy. For example, on PAMAP, NB obtains 99.17% 
accuracy, which is higher than the 51.54% of PCA(NB), the 
96.65% of reliefF(NB), and the 98.26% of mRMR(NB). For 
the complex SkodaMiCP, SVM gets the accuracy of 94.59%
compared with the 87.37% of PCA(SVM), the 83.13% of 
reliefF(SVM), and the 69.10% of mRMR(SVM). This 
indicates the necessity for a further study of designing 
effective feature reduction methods to derive an optimal 
feature subset.

D. Parameter Sensitivity Analysis
The parameters numTrees and numFeatures in building a

random forest are two crucial parameters in lowering the 
correlation between individual trees of the forest and they
largely influence the generalization ability of a random forest.
We herein evaluate their effects by varying the values of
numTrees and numFeatures. The values tested for the 
numTrees parameter are 1, 5, 10, 20, 30, 50, 90, and 120, and 

the values tested for the numFeatures are mtry/4, mtry /2,
mtry, 2*mtry, 4*mtry, where mtry is the square root of the 
number of features. Fig. 5 presents corresponding results on 
the three datasets. The X-axis represents the candidate values 
of numFeatures, Y-axis denotes numTrees, and Z-axis shows
the recognition performance of F1. From Fig. 5, we observe 
that the two parameters indeed influence the performance of 
RF-based activity recognizer and that numTrees has a greater 
impact on the performance than numFeatures. That is, the 
activity recognizer is less sensitive to the number of splitting
features. From the view of numTrees, there is a general trend 
that the tendency to overfit decreases with the increase of the 
number of trees, and the use of 50 trees is tradeoff between 
the time costs and recognition accuracy.

E. Time Costs
In addition to accuracy, time cost in making predictions

is another factor where consideration is needed, especially
for wearable sensor-based activity recognition systems that 
have limited resources. We herein investigate the time cost
of RF-based activity recognizer and conducted experiments 
on a computer with a Core i5 3.2GHz CPU and 4G RAM. 

(a) PAMAP (b) PAMAP2 (c) SkodaMiCP
Figure 4. Comparison of accuracy with two feature selectors and one feature extractor.

(a) PAMAP (b) PAMAP2 (c) SkodaMiCP
Figure 5. Parameter sensitivity analysis with regards to the number of trees and number of splitting features.
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Figure 6. Time cost comparison.

Fig. 6 presents the comparative experimental results with 
the ensemble models on the datasets. We observe that RF-
based activity recognizer has a comparable time cost to the 
those of AdaBoost and Bagging and can process more than 
one thousand samples per seconds on all the datasets, which 
demonstrates its applicability to practical applications. This 
indicates that the RF remains a priority towards a tradeoff 
between time cost and accuracy.

V. CONCLUSION

Accurately recognizing human activities plays a central
role in a variety of real-world applications that range from 
smart home and ambient assisted living systems to human-
computer interaction and the elderly healthcare. Among the 
sensing units, the use of wearable sensors remains a priority 
in building activity recognizers and developing pervasive 
applications. However, the inherent complexity of human 
behavior makes it difficult to infer the on-going activities
and further requires researchers to design effective and 
robust activity recognition models with good generalization 
ability. In this study, we present a wearable sensor-based 
activity recognizer using the random forest classifier and
systematically investigate its performance from multiple
aspects. We perform extensive experiments on three publicly 
available datasets to explore several aspects, such as its 
comparison with other widely used classifiers and feature 
selection and extraction methods, and the recommended
parameter values. Experimental results show that the RF-
based activity recognizer outperforms other five individual 
classifiers, three ensemble models, two feature selectors, and 
one feature extractor across different scenarios. Besides, the 
parameter sensitivity analysis and time cost analysis show its
stability and applicability to practical applications. Future 
work includes its implementation in a wearable device and 
the exploration of effective feature selection methods.
Particularly, different human activities may have a different 
subset of features to reflect its unique characteristics, and this 
requires further researches in obtaining the activity label 
dependent feature subsets [15].
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