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Abstract—Surface electromyography (sEMG) reflects muscle 
contraction states, provides critical signals for decoding hand 
movements, and thus holds significant potential in applications 
such as human-computer interaction and prosthetic control. 
However, it still a significant challenge to model the complex, non-
linear, and dynamic patterns in the sEMG signals. In this paper, 
we propose a novel deep neural network that integrates 
convolutional neural network (CNN) and Kolmogorov-Arnold 
networks (KAN), termed ACNN-KAN, to utilize both CNN’s local 
context modeling and KAN’s adaptive nonlinearity for gesture 
recognition. Specifically, CNNs are first utilized to extract spatial 
features and an attention mechanism is integrated to enhance 
global dependency modeling. KAN is then leveraged to learn 
feature representation. We evaluate ACNN-KAN on three publicly 
available datasets (i.e., Ninapro DB1, DB5, and Myo) against nine 
competitors in terms of four performance metrics. Experimental 
results show that ACNN-KAN outperforms its competitors and 
achieves accuracies of 88.59% on DB1, 90.42% on DB5, and 96.10% 
on Myo, demonstrating its adaptability of KAN in gesture 
recognition.  

Keywords—Surface electromyography, gesture recognition, 
Kolmogorov-Arnold networks 

I. INTRODUCTION 

Gesture provides a natural and flexible means of conveying 
information in human-computer interaction, and hence gesture 
recognition has emerged as a prominent research area, with a 
variety of applications such as smart prosthetics, sign language 
recognition, and medical rehabilitation. However, the inherent 
complexity of hand movements poses a significant challenge for 
the accurate recognition of gestures. To enhance the accuracy 
and generalizability of gesture recognition systems, researchers 
have explored a wealth of sensing units and models. According 
to the underlying sensor types, existing methods can be divided 
into four groups: ambient sensor-based, vision-based, wearable 
sensor-based, and physiological sensor-based methods. Vision-
based methods utilize cameras to capture image sequences of 
hand movements and use computer vision techniques to infer 
gestures [1]. Although having a wide range of applications, such 
methods are highly susceptible to lighting conditions, occlusions, 
and complex backgrounds, and inevitably raise privacy concerns. 
Ambient sensor-based methods detect hand movements by 
analyzing radar or WiFi signals [2]. Although offering a non-
invasive solution, such methods suffer from low spatial 

resolution, which limits their ability to detect fine-grained hand 
movements and makes them prone to interference from other 
signals. Wearable sensor-based methods exploit devices such as 
accelerometers and gyroscopes to track hand movements [3]. 
Though having the advantage of pervasiveness, their 
performance is easily influenced by sensor placement variability 
and interference from body movements. Since hand movements 
elicit distinct physiological responses, researchers have also 
investigated sEMG-based approaches due to their high 
sensitivity, non-invasive nature, and less susceptibility to 
environmental interference [4]. sEMG signals provide valuable 
insights into muscle activity and serve as key indicators of hand 
movements. Traditionally, the sEMG-based gesture recognition 
chain consists of the training stage and prediction stage. For the 
former, a gesture recognition model is trained on the collected 
sensor data, where the extraction of features and choice of 
classification models are its two crucial components. Feature 
extraction aims to extract handcrafted meaningful 
representations from raw sEMG signals to better reflect the 
characteristics of gestures. We can group existing features into 
time domain, frequency domain, and time-frequency domain. 
Commonly used time-domain features include mean, maximum, 
minimum, and zero cross rate. The fast Fourier transform is used 
to transform time-domain signals into frequency domain, 
followed by the extraction of features such as energy, direct 
component, spectral centroid, skewness, and kurtosis. Wavelet 
transform and Hilbert-Huang transform can be used to extract 
time-frequency features. For example, Zhang et al. proposed a 
gesture recognition model trained with time-domain features to 
distinguish five gestures [5]. Afterwards, the classification 
model takes as input the extracted features to optimize a gesture 
recognizer. The candidate classification models range from 
discriminative to generative models. One major limitation of 
traditional machine learning based methods is that their 
performance largely relies on the quality and quantity of the 
selected features [6].  

The rapid advancement of deep learning has significantly 
accelerated research in gesture recognition. Deep learning 
techniques enable end-to-end learning by automatically 
extracting hierarchical representations from raw sEMG data, 
which eliminates the need for manual feature engineering and 
obtains superior performance. To utilize translation and rotation 
invariance among sEMG signals, researchers have explored the 
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use of convolutional neural networks. For example, Liu et al. 
designed a multiscale CNN-based gesture recognition model for 
recognizing sixteen complex hand gestures [7]. To capture the 
long-range dependency among signals, researchers have also 
investigated the power of recurrent neural networks. For 
example, He et al. utilized long short-term memory (LSTM) 
networks to recognize static gesture features, obtaining accuracy 
of 75.45% for ten gestures on the Ninapro dataset [8]. 
Recognizing the critical role of attention mechanisms in 
dynamically highlighting relevant features, recent studies have 
integrated these mechanisms into gesture recognition models. 
For example, Xu et al. designed a CNN model augmented with 
channel-wise attention and obtained accuracy of 89.54% for 18 
gestures on the Ninapro DB5 dataset [9]. Despite improvements 
in recognition accuracy, these methods usually require 
substantial computational resources and face two challenges: the 
locality of convolution operations constrains the ability of CNNs 
to capture long-term dependencies, which is crucial for decoding 
gestures with complex temporal dynamics; the fully connected 
layers rely on static linear transformations and are sensitive to 
parameter tuning, where fixed activation functions struggle to 
adapt to the non-stationary characteristics of sEMG signals. To 
overcome these limitations, the Kolmogorov-Arnold Network 
(KAN), grounded by the Kolmogorov-Arnold representation 
theorem, has been proposed. KAN effectively captures complex 
dependencies and patterns within data, making it particularly 
well-suited for gesture recognition. Furthermore, its integration 
with CNNs can further enhance recognition accuracy. By 
leveraging the local context modeling capability of CNNs and 
the adaptive nonlinearity of KAN, this hybrid architecture 
achieves a balance between flexibility and computational 
efficiency. In this study, we propose a deep neural network that 
integrates CNNs and KANs, termed ACNN-KAN, to enhance 
feature extraction and representation. Specifically, CNNs are 
utilized to extract spatial features, while an attention mechanism 
is incorporated to capture global dependency. KAN is then 
utilized to refine feature representation, where learnable 
activation functions are employed to enhance the expressiveness 
of fully connected layers. The main contributions of this study 
are as follows. (1) We propose a hybrid architecture of CNNs 
and KAN. This integration enables the model to utilize CNN’s 
local context modeling ability and KAN’s adaptive nonlinearity. 
Particularly, an attention mechanism is embedded in CNNs to 
selectively emphasize salient features and suppress irrelevant 
ones. (2) We conduct comparative experiments on three public 
datasets to validate the effectiveness of ACNN-KAN. 
Comparative experiments against nine competitors in terms of 
four performance metrics demonstrate its superiority.  

II. GESTURE RECOGNITION MODEL 

A. The Proposed Model 

Fig. 1 presents the model architecture of ACNN-KAN that 
consists of three main components: basic CNN architecture, 
Squeeze-and-Excitation (SE) block, and KANLinear layer. The 
basic CNN architecture comprises four Conv2D layers, each 
setting the kernel size to 3x3 and using PReLU as the activation 
function. Batch normalization follows each Conv2D layer to 
facilitate training stability. To enhance the network’s feature 
representation capability, one SE block is inserted after each 
PReLU activation function. Afterwards, KANLinear layer is 

used to learn features and perform feature mapping, where 
KANLinear layer adopts learnable activation functions for its 
weight components. 

 
Fig. 1. Schematic diagram of the network structure of ACNN-KAN. 

B. Kolmogorov-Arnold Network 

The Kolmogorov-Arnold representation theorem indicates 
that any multivariate continuous function f can be represented as 
a combination of a finite number of univariate continuous 

functions:  
2 1

1 ,
1 1

, , Φ φ ( )
n n

n q q p p
q p

f x x x


 

 
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univariate function that maps each input variable xp ∈ [0,1] to 
 , and Φ :q   . With this theorem, the Kolmogorov-

Arnold Network is proposed [10], where the KANLinear layer 
is used to build a neural network layer. KANLinear employs 
learnable univariate functions to approximate complex 

multivariate functions  ,
1 1
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Q P
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q p

y x
 
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  

 
  , where xp is the pth 

input feature, with P being the total number of input features, Q 
is the number of output features, and φq,p and Φq are univariate 
functions realized via splines, respectively. The function 
spline(x) is parameterized as a linear combination of B-spline.  

                                       spline( ) ( )i i
i

x c B x                           (1) 

, where Bi(x) is the B-spline basis functions and ci are the 
trainable coefficients. These coefficients determine the 
activation function. To further enhance the stability and 
trainability, the KANLinear layer introduces a residual 
activation function φ(x).  

                                  φ( ) ( ) spline( )b sx w b x w x                       (2) 

, where b(x) is the basis function. The residual structure provides 
a direct path for gradient propagation. Unlike traditional neural 
networks with fixed activation functions, KAN employs 
learnable activation functions, which allows the network to 
flexibly capture complex data patterns. It is worth noting that the 
original design of KAN may lead to longer training times. Hence, 
we use an optimized implementation of the original KAN, called 
Efficient KAN [11].  

III. EXPERIMENTAL SETUP AND RESULTS 

A. Experimental Data 

We in this study use three public datasets (i.e., Ninapro DB1, 
DB5, and Myo [12]) as shown in Table 1 to evaluate the 
effectiveness of ACNN-KAN. DB1 comprises sensor data 
recorded from 27 able-bodied subjects using 10 OttoBock 
sEMG electrodes at a sampling rate of 100 Hz, with each gesture 
repeated 10 times. DB5 consists of data from 10 able-bodied 
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subjects, recorded using two Thalmic Myo armbands at a 
sampling rate of 200 Hz, with each gesture repeated 6 times. 
Each of the datasets includes 52 movements (plus a rest position), 
categorized into Exercise A, B, and C. Our study focuses on 
Exercise B that consists of eight isometric and isotonic hand 
configurations, nine fundamental wrist movements, and a ‘relax’ 
gesture. The Myo dataset consists of data from 13 able-bodied 
subjects using a single Myo armband. The dataset consists of 21 
gestures, with each gesture repeated 30 times. 

Table 1 Basic Information of Experimental Datasets 

Datasets #Subjects #Gestures 
sEMG 

Channels 
Sampling 

Rate 
Ninapro DB1 27 18 10 100Hz 
Ninapro DB5 10 18 16 200Hz 

Myo 13 21 8 200Hz 

B. Experimental Setup 

Since raw sEMG signals are highly sensitive to noise and 
external interference and contain a significant amount of invalid 
data, preprocessing is performed to provide high-quality input 
for subsequent tasks. Specifically, data are first normalized to 
the range [0,1]. A fourth-order Butterworth low-pass filter with 
a 50 Hz cutoff frequency is applied to remove low-frequency 
noise. Afterwards, a sliding window of 1000 milliseconds with 
a stride of 10 milliseconds is used to segment the raw sEMG 
signals. To ensure an unbiased evaluation, we follow the official 
experimental setup for the Ninapro dataset. For DB5, the 2nd and 
5th repetitions are designated as the test set; for DB1, the 2nd, 5th, 
and 7th repetitions are used as the test set. The remaining serve 
as the training and validation sets, where a further k-fold cross 
validation is used to generate independent training and 
validation sets. This procedure is repeated four times for DB5 
(and seven times for DB1), and we report the average accuracy, 
precision, recall, and F1-score. For the Myo dataset, each gesture 
is repeated 30 times, which are split into training, validation, and 
test sets. In each fold, five repetitions are assigned as the test set, 
five as the validation set, and the remaining 25 for training. This 
process is repeated six times. The results are reported as the 
average accuracy, precision, recall, and F1-score. 

To validate the effectiveness of the proposed model, we 
compared its performance against commonly used machine 
learning based methods (including support vector machine 
(SVM), random forest (RF)) and deep learning architectures 
(including CNN, LSTM, CNN-LSTM, temporal convolutional 
network (TCN), SE-CNN [9], KAN [11], and DRCN [13]). The 
features for traditional machine learning based methods include 
mean absolute value, slope sign change, waveform length, and 
root mean square. For deep learning-based models, they take as 
input the raw sEMG signals. Table 2 presents an overview of the 
architectural configurations of the compared models. To ensure 
a fair comparison, the models are trained using consistent 
strategies. We implement the models in the PyTorch framework 
and use the Adam optimizer for model training on a server 
equipped with an NVIDIA GeForce RTX 4090 GPU and an 
Intel® Core™ i7-13700KF 3.42 GHz CPU. We empirically set 
the initial learning rate of 0.001 and a batch size of 128. During 
training, if the validation loss does not decrease for 8 consecutive 
epochs, we reduce the learning rate by a factor of 10. The 

number of epochs is 100 and the training process is terminated 
if the validation loss does not improve for 10 consecutive epochs. 

Table 2 Architectural Parameters of Different Deep Learning Models 

Models Modules Parameters Value 

CNN / 
Layers 4 

Kernel size [3, 3] 
Kernels [32, 64, 128, 256] 

LSTM / 
Layers 3 

Hidden nodes 128 

CNN-
LSTM 

CNN 
Layers 3 

Kernel size 3 
Kernels [64, 128, 256] 

LSTM 
Layers 3 

Hidden nodes 128 

TCN / 
Levels 

[64(d=1), 64(d=2), 
128(d=4), 128(d=8)] 

Kernel size 2 
Hidden dimensions [64, 64, 128, 128] 

KAN / 

Grid size 5 
Spline order 3 
Scale noise 0.1 

Activation function SiLU 
Grid range [-1, 1] 

SE-
CNN 

CNN 
Layers 3 

Kernel size [8, 5, 3] 
Kernels [128, 256, 512] 

Squeeze-and-
Excite block 

Layers 3 

Attention Layers 1 
/ Dropout 0.5 

DRCN 

CNN 
Layers 1 

Kernel size [7, 7] 
Kernels 16 

DRCN block 

Layers 3 
Dilation [1, 2, 4] 

Kernel size [3, 3] 
Kernels [32, 64, 128] 

ACNN-
KAN 

CNN 
Layers 4 

Kernel size [3, 3] 
Kernels [32, 64, 128, 256] 

Squeeze-and-
Excite block 

Layers 4 

KANLinear 

Grid size 5 
Spline order 3 
Scale noise 0.1 

Activation function SiLU 
Grid range [-1, 1] 

C. Results 

Table 3 presents the results concerning accuracy, precision, 
recall, and F1 score. We can observe that ACNN-KAN model 
outperforms its competitors across the three datasets. For 
example, ACNN-KAN achieves an accuracy of 88.59%, 90.42%, 
and 96.10% on DB1, DB5, and Myo, respectively, surpassing 
the best-performing DRCN model by a margin of 0.74%, 0.91%, 
and 0.81%. We can also observe that machine learning-based 
methods can be competitive in some scenarios. For example, 
SVM and RF on DB1 achieve accuracies of 84.18% and 84.44%, 
respectively, outperforming both TCN (73.62%) and LSTM 
(73.91%). However, these methods struggle to model the 
complex spatiotemporal features of raw sEMG signals. For 
instance, on the Myo dataset, the accuracy of SVM (90.33%) is 
notably lower than that of ACNN-KAN (96.10%). Among the 
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four deep learning models (i.e., CNN, LSTM, CNN-LSTM, and 
TCN), CNN consistently outperforms the other three across all 
datasets. For example, CNN on DB1 achieves 86.64% accuracy, 
outperforming LSTM (73.91%), CNN-LSTM (84.37%), and 
TCN (73.62%). This is due to CNN’s capability to capture local 
and translation invariance in sEMG signals. KAN performs 
better than TCN and LSTM across all datasets, which can be 
attributed to the replacement of traditional linear weight matrices 
with learnable activation functions of KAN. This modification 

enables more effective feature learning. Integrating KAN’s 
robust function approximation capability with CNN’s local 
feature extraction ability leads to classification performance 
gains. For example, ACNN-KAN on DB5 surpasses KAN by 
4.85% and CNN by 3.66% in accuracy. Besides, we also 
compared it with other sEMG-based gesture recognition 
methods reported in the literature (i.e., SE-CNN and DRCN). 
The results confirm that ACNN-KAN outperforms these models 
across all evaluated datasets. 

Table 3 Results of Different Gesture Recognition Models 

Models 
Ninapro DB1 Ninapro DB5 Myo 

Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 

SVM 0.8418 0.8482 0.8430 0.8398 0.7940 0.8013 0.7961 0.7923 0.9033 0.9110 0.9033 0.9019 

RF 0.8444 0.8497 0.8458 0.8419 0.8467 0.8534 0.8488 0.8457 0.8985 0.9062 0.8985 0.8965 

CNN 0.8664 0.8802 0.8686 0.8660 0.8676 0.8882 0.8717 0.8695 0.9524 0.9579 0.9524 0.9511 

LSTM 0.7391 0.7454 0.7388 0.7314 0.6124 0.6053 0.6039 0.5889 0.8914 0.8988 0.8914 0.8887 

CNN-LSTM 0.8437 0.8554 0.8461 0.8421 0.8211 0.8320 0.8220 0.8165 0.9190 0.9262 0.9190 0.9175 

TCN 0.7362 0.7499 0.7379 0.7349 0.6735 0.6965 0.6678 0.6607 0.6993 0.7074 0.6993 0.6954 

KAN 0.8185 0.8345 0.8202 0.8182 0.8557 0.8678 0.8571 0.8545 0.9100 0.9161 0.9100 0.9079 

SE-CNN 0.8577 0.8706 0.8605 0.8557 0.8321 0.8451 0.8319 0.8277 0.9215 0.9286 0.9215 0.9191 

DRCN 0.8785 0.8882 0.8799 0.8776 0.8951 0.9043 0.8975 0.8950 0.9529 0.9577 0.9530 0.9516 

ours 0.8859 0.8934 0.8866 0.8842 0.9042 0.9153 0.9059 0.9045 0.9610 0.9650 0.9610 0.9599 

IV. CONCLUSION 

Due to the inherent complexity of gestures, how to capture 
non-linear dependencies and learn feature representations 
largely determines the performance of a gesture recognition 
model. In this paper, we propose a novel sEMG-based gesture 
recognition model that integrates convolutional neural networks 
and Kolmogorov-Arnold networks to enhance classification 
accuracy. By leveraging CNNs for spatial feature extraction and 
an attention mechanism to highlight discriminative regions, our 
model effectively captures critical muscle activity patterns. 
Besides, the use of KAN enables better handling of non-linear 
feature representations. Finally, comparative experiments on 
three datasets demonstrate the superiority of our approach.  

For future work, deep learning-based gesture recognition 
models generally have high computational requirements. To 
improve the general applicability of these models, we plan to use 
lightweight techniques to reduce model complexity. Second, due 
to individual differences, cross-domain performance of gesture 
recognition models suffers from degraded performance. 
Therefore, leveraging transfer learning techniques to enhance 
domain adaptability remains another promising research topic. 
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