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ABSTRACT   

Accurately recognizing hand gestures has great significance in assisting human-computer interaction, enhancing user 
experience, and developing a human-centered ubiquitous system. Due to the inherent complexity of hand gestures, 
however, how to capture discriminant features of hand motions and build a gesture recognition model remains crucial. 
To this end, we herein propose a gesture recognition method based on multi-sensor information fusion. Specifically, we 
first use the accelerometer and surface electromyography (sEMG) sensor to capture the kinematic and physiological 
signals of hand motions. Afterward, we utilize the sliding window technique to segment the streaming sensor data and 
extract various features from each segment to return a feature vector. We then optimize a gesture recognition model with 
the feature vectors. Finally, comparative experiments are conducted on the collected dataset in terms of different 
machine learning models, different sensors, as well as different types of features. Results show the joint use of sEMG 
sensor and accelerometer achieves the average accuracy of 97.88% compared to the 90.38% of using sEMG sensor and 
84.03% of using accelerometer among four classifiers, which indicates the effectiveness of multi-sensor fusion. Besides, 
we quantitatively investigate the impact of null gesture on a gesture recognizer.  
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1. INTRODUCTION  
With the rapid development of information technology and the increasing demand for smart services, the way of human 
computer interaction has been shifted from computer-centered scheme to human-centered one [1]. Accordingly, 
researchers have developed a wealth of methods and tools to facilitate the procedure, among which, hand gesture is a 
convenient and natural interaction tool. Compared with other methods such as the keyboard, voice, and camera, gesture 
has the advantage of naturalness, directness, simplicity, high robustness, and high degree of portability and it has a rich 
and wide range of application scenarios such as entertainment, intelligent control, rehabilitation, and security. Therefore, 
it is of great practical significance to accurately recognize gestures [2, 3, 4]. However, the diversity and complexity of 
hand gestures brings great challenges to gesture recognition, which has drawn significant attention from both industry 
and academia.  

To improve user experience, adopt to various application scenarios, and enhance recognition performance, researchers 
have done considerable work on models and sensing units. As for the training of a gesture recognizer, researchers have 
used many statistical analysis and machine learning models. For example, Bargellesi et al. proposed a random 
forest-based gesture recognition model to recognize ten gestures [5]. Pomboza-Junez et al. used the support vector 
machine to recognize gestures with sEMG sensors embedded in a bracelet [6]. Benefitting from the development of deep 
learning models, there are studies that use end-to-end deep learning models. For example, Guo et al. used a deep 
convolution neural network to recognize static gestures, which obtains high precision and robustness [7]. Hu et al. 
proposed a deep learning model-based gesture recognizer for the control of unmanned aerial vehicles [8]. Gadekallu et al. 
used convolutional neural networks (CNNs) to classify gesture images. To tune the hyperparameters of the CNN, a new 
metaheuristic algorithm was used and the hybrid model achieved the accuracy of 100% [9]. Though achieving better 
performance, deep learning models generally require a large volume of data and rich computing resources, which is not 
suitable for wearable devices.  

As for sensing units, commonly used sensors include vision, motion sensors, and physiological sensors. For example, 
Ren et al. proposed a gesture recognition system with a Kinect and obtained the average accuracy of 93.20% [10]. 
vision-based methods, however, are susceptible to occlusion, illumination change and noise, and also suffer from the 
privacy issue [11]. Motion sensors are often integrated into wearable devices, and gesture recognition models are often 
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built via the sensor data collected by the device. For example, Wang et al. use the smartphone built-in sensors for human 
activity recognition [12]. However, due to the sensitivity of motion sensors, they often have limited power in detecting 
subtle hand movements. With the development of sEMG sensor, gesture recognition can be achieved with the muscle 
signals. For example, Lu et al. evaluated a set of wearable devices with sEMG sensors, and got 95.00% accuracy in 
recognizing 19 predefined actions [13]. Due to the complexity and diversity of gestures, however, the single use of 
sEMG sensor has limited power [14, 15]. Accordingly, there are studies that use multiple sensors to capture the 
multi-view gesture information. For example, Jiang et al. fused the sEMG sensor and inertial measurement unit and 
tested its feasibility for gesture recognition [16]. Although researchers have done lots of work on sensor-based gesture 
recognition, few studies have systematically investigated the extraction and use of different types of features from raw 
sensor signals and the way of how to extract features from a 3-axis accelerometer. Besides, we often ignore the null 
gesture problem and fail to evaluate its influence on a gesture recognizer [17].  

To this end, we in this paper design a gesture recognition device with an accelerometer and an sEMG sensor and build a 
gesture recognizer by optimizing the use of extracted features. The main contributions of this study include: (1) We 
propose a gesture recognizer by building a sensing device that consists of an accelerometer and an sEGM sensor and 
fusing their signals. We also compare their effectiveness in gesture recognition. (2) Time-domain and frequency-domain 
features are extracted from the segmented sensor signals. Particularly, for the sEMG sensor, we extract features from the 
difference of its dual-channel signals. For the 3-axis accelerometer, we compare the power of extracting features from 
each axis or from the resultant axis and also evaluate their single use and joint use. (3) The impact of null gesture on a 
gesture recognizer is preliminarily and quantitatively studied. (4) Extensive comparative experiments are conducted and 
results indicate that the joint use of sEMG sensor and accelerometer obtains higher accuracy and that the null gesture 
generally leads to reduced recognition accuracy.  

2. THE PROPOSED GESTURE RECOGNITION MODEL 
2.1 Hardware 

To capture both the kinematic and physiological signals of hand motions, we use the accelerometer and sEMG sensor, as 
shown in Figure 1. The accelerometer signals are first filtered with a filter and then transmitted to the server with 
Bluetooth and the sEMG signals are first preprocessed with rectification and integration operations and then transmitted 
to the server. 

 
(a) sEMG sensor 

 
(b) accelerometer 

Figure 1. The used sensors 

Since hand movement is closely related to the muscle cooperation of the forearm, functions of each muscle in hand 
movement are different. In the experiment, the palmar longus muscle and extensor digitorum are more active than others 
when an individual performs gestures, so the two channels of the sEMG sensor are connected to the two positions [18], 
and the accelerometer is worn on the position that has the greatest movement range, as shown in Figure 2.   

  
Figure 2. The position of the sensors 
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2.2 Feature Extraction 

We use a sliding window without overlapping to divide the time-series sensor data into segments and then extract both 
time-domain and frequency-domain features from each segment to return a feature vector. Specifically, for the 
dual-channel EMG signals, we extract features from each channel and from the difference between the values of the two 
channels. For the three-axis acceleration signals {ax, ay, az}, we extract features from each axis and the resultant axis rlt 
of the three axes.  

2 2 2
x y zrlt a a a= + +           (1) 

The used time-domain features include mean, maximum, minimum, standard deviation, difference between maximum 
and minimum, and mode. For frequency-domain features, we first transform sensor data into frequency domain and then 
extract direct component, four shape features (i.e., mean, standard deviation, skewness, and kurtosis) and four amplitude 
features (i.e., mean, standard deviation, skewness, and kurtosis).  

3. EXPERIMENTAL RESULTS AND ANALYSIS 
3.1 Data Collection 

We recruit four healthy male volunteers and collect sensor signals when they perform different hand gestures. Their 
basic information is shown in Table 1. 

Table 1.  Information of the four subjects 

Name Gender Height/cm Weight/kg Age 
C male 175 65 25 
G male 174 65 23 
S male 167 68 25 
Z male 181 68 23 

During data collection, volunteers sat on a chair and were in a relaxed state. In this experiment, we collected data related 
to four gestures: open, turn up, turn down, and fist. Besides, we also collected sensor data of null gesture. Figure 3 
presents the exemplary gestures. For each type of gesture, 200 groups of data are collected from each people. 

 
(a) open  

(b) turn up 
 

(c) fist 
 

(d) turn down 
Figure 3. Illustration of the four gestures.  

3.2 Experimental Setup 

In the experiments, the sampling frequencies of the sEMG sensor and accelerometer are 200 and 100 Hz, respectively. 
The collected sensor data were divided into segments using a non-overlapping window of 1 second size, and 
time-domain and frequency-domain features were then obtained from the segmented sEMG data and accelerometer data. 
Afterwards, we train a gesture recognizer with a classification model. For fair comparisons, we investigate four models 
with different metrics, including support vector machine with linear kernel (SVM), random forest (RF), naïve bayes 
(NB), and logistic regression (LR) [19].  

A stratified ten-fold cross validation is adopted to generate independent training sets and test sets, where the former is 
used to train a gesture recognition model and the latter is used to validate the power of a recognizer. We report the 
average of the results. As for performance metrics, we use accuracy (acc), precision (pre), recall (rec), and F1. 
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3.3 Experimental Results and Analysis 

3.3.1 Gesture recognition based on the sEMG sensor 

Table 2 shows the experimental results of just using sEMG sensor data. The first column shows the used features, where 
TD refers to time-domain features, FD is frequency-domain features, and TFD indicates the concatenation of TD and FD. 
We organize the results by the used classification model. The best accuracy and F1 in each group are shown in bold and 
the best accuracy and F1 in each domain are underlined.  

From Table 2, we can observe that the use of random forest outperforms its competitors with TD, FD, as well as TFD. 
For example, random forest achieves 99.48% accuracy in the time domain, compared to the 94.76% of SVM, 61.39% of 
NB, and 83.38% of LR. This indicates the superiority of RF in building a hand gesture recognizer. Second, we obtain 
mixed results in comparing the use of time domain features and frequency domain features. For example, RF obtains 
99.48% accuracy with TD and 96.60% accuracy with FD, while the use of FD performs better than TD with NB. Third, 
we see that the joint use of time-domain and frequency-domain features generally obtains better results than the single 
use of TD and FD. This is mainly because there exists complementary information between time-domain and 
frequency-domain features.  

3.3.2 Gesture recognition based on the accelerometer 

Table 3 presents the results of using accelerometer data, where the first column represents the features, where X-TFD is 
the time-domain features and frequency-domain features that are extracted from the X-axis of the 3-axis accelerometer, 
and Y-TFD and Z-TFD correspond to the features extracted from Y-axis and Z-axis, respectively. XYZ-TFD is the 
concatenation of X-TFD, Y-TFD, and Z-TFD, and rlt-TFD is the time-domain and frequency-domain features extracted 
from the resultant axis of the three axes. We organize the results by the used classification model. The best accuracy and 
F1 in each group are shown in bold, and we underline the best F1 and accuracy.  

From Table 3, we observe that the use of random forest outperforms its competitors in all cases of different types of 
features (i.e., X-TFD, Y-TFD, Z-TFD, XYZ-TFD, and rlt-TFD). For example, the RF gets 80.10% accuracy with X-TFD, 
compared to the 66.49% of SVM, 45.03% of NB, and 57.07% of LR, which indicates the superiority of RF over SVM, 
NB, and LR. Second, we observe that the joint use of features of three axes obtains better recognition accuracy than their 
single use. For example, when using RF, we obtain 93.72% accuracy with XYZ-TFD, compared to the 80.10% of X-TFD, 
87.96% of Y-TFD, and 82.85% Z-TFD. This indicates that different axes contain complementary information that helps 
to discriminate different gestures. Third, we observe that the concatenation of features of the three axes performs better 
than the features of the resultant axis. This is possibly because loss of information occurs when we only use the resultant 
axis to extract features. 

3.3.3 Gesture recognition based on multiple sensors 

Table 4 presents the results of different types of sensors, where the first column denotes the used sensors. We extract 
XYZ-TFD from the accelerometer based on the results of Table 3, extract TFD from the sEMG sensor based on the 
results of Table 2, and the last row “Both” denotes the results of using both the sEMG sensor and accelerometer. The 
results are organized by the used classification model and the best is show in bold.  

From Table 4, we see that the use of sEMG sensor tends to achieve higher accuracy than the use of the accelerometer. 
For example, when using SVM, we obtain 96.86% accuracy with the sEMG sensor and only get 89.27% accuracy with 
the accelerometer. This is possibly because the sEMG sensor better captures the movement of muscles. Second, we 
observe that the joint use of sEMG sensor and accelerometer performs better than their single use. For example, SVM 
obtains 98.43% accuracy with the sEMG sensor and accelerometer, compared to the 96.86% of the sEMG sensor, and 
89.27% of the accelerometer. This is mainly because that accelerometer and sEMG sensor provide complementary 
information to each other. This demonstrates the effectiveness of multi-modal data in improving a gesture recognizer. 
Third, we also observe that RF generally performs better than SVM, NB, and LR.  

3.3.4 Null gesture 

In contrast to the above experiments that consider null gesture, we in this section evaluate the case without null gesture 
to preliminarily show its impact on a hand gesture recognizer. Table 5 presents the corresponding results and the best 
accuracy and F1 in each group are shown in bold. We see that the joint use of sEMG sensor and accelerometer 
outperforms the single use of sEMG sensor and accelerometer. Second, we see that the inclusion of null gesture 
generally obtains lower accuracy compared the case of without null gesture. For example, SVM gets 96.86% accuracy 
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with sEMG sensor, 89.27% accuracy with accelerometer, and 98.43% accuracy with sEMG sensor and accelerometer in 
Table 4, and these numbers increase to 98.34%, 91.07%, and 99.24% in Table 5. This is mainly because there exists 
similarity between null gesture and the four predefined gestures, which indicates that null gesture should be considered 
in designing and implementing a gesture recognizer for practical use. 

Table 2.  Experimental results (%) using the sEMG sensor 

Features SVM RF NB LR 
Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 

TD 94.76 95.06 94.72 94.87 99.48 99.41 99.45 99.43 61.39 68.57 58.40 58.48 83.38 84.80 83.19 83.77 
FD 94.90 94.87 94.69 94.84 96.60 96.26 96.42 96.36 73.82 76.79 73.26 74.97 87.30 87.45 87.00 87.16 

TFD 96.86 97.14 96.56 96.81 98.96 98.91 98.99 98.95 75.00 76.45 74.80 74.98 90.71 91.08 90.73 90.47 
 

Table 3.  Experimental results (%) using the accelerometer 

Features SVM RF NB LR 
Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 

X-TFD 66.49 68.71 68.86 68.79 80.10 81.37 81.66 81.45 45.03 52.7 45.31 48.46 57.07 59.92 59.58 59.65 
Y-TFD 77.49 80.39 79.39 79.72 87.96 88.60 88.97 88.77 59.55 65.55 60.25 61.69 66.75 68.70 67.51 67.98 
Z-TFD 75.00 77.73 77.04 77.10 82.85 84.01 84.13 84.08 59.03 71.56 60.06 67.57 69.50 72.18 71.72 71.59 

XYZ-TFD 89.27 90.97 90.31 90.60 93.72 94.36 94.17 94.26 69.37 73.14 71.17 71.48 83.77 85.69 85.36 85.48 
rlt-TFD 76.83 80.03 78.91 79.32 81.28 84.36 84.05 83.82 48.56 51.72 49.56 50.02 72.25 76.03 74.59 74.82 

 

Table 4.  Experimental results (%) of different sensors 

Features SVM RF NB LR 
Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 

sEMG sensor 96.86 97.14 96.56 96.81 98.96 98.91 98.99 98.95 75.00 76.45 74.80 74.98 90.71 91.08 90.73 90.47 
Accelerometer 89.27 90.97 90.31 90.60 93.72 94.36 94.17 94.26 69.37 73.14 71.17 71.48 83.77 85.69 85.36 85.48 

Both 98.43 98.66 98.34 98.48 99.09 99.16 99.08 99.12 95.94 96.41 95.90 96.13 98.04 98.23 98.07 98.13 
 

Table 5.  Experimental results (%) of different sensors without null gesture 

Features SVM RF NB LR 
Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 

sEMG sensor 98.34 98.39 98.22 98.31 99.24 99.36 99.20 99.23 76.70 77.50 75.67 75.57 92.74 92.78 92.52 92.64 
Accelerometer 91.07 91.66 91.34 91.64 94.86 94.70 94.68 94.69 67.62 69.51 67.60 67.76 85.48 86.24 86.28 86.25 

Both 99.24 99.31 99.15 99.23 99.55 99.66 99.39 99.53 97.28 97.44 97.09 97.24 98.64 98.70 98.56 98.62 

4. CONCLUSION 
The selection of sensors and the use of extracted features largely determine the performance of a gesture recognizer, and 
pose a great challenge to the design of a gesture recognition model. We herein use an accelerometer and an sEMG sensor 
to capture kinematic and physiological signals of hand motions. The sliding window technique is then used to divide the 
sensor data for extracting time-domain and frequency-domain features. Comparative experiments in terms of different 
sensors, different features, and different models are conducted. Results indicate that the joint use of accelerometer and 
sEMG sensor generally obtains better recognition accuracy and the inclusion of null gesture generally leads to degraded 
performance, which motivates users to consider it in building a gesture recognition system.  
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