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Microarray data suffer from missing values for various reasons, including insufficient resolution, image
noise, and experimental errors. Because missing values can hinder downstream analysis steps that re-
quire complete data as input, it is crucial to be able to estimate the missing values. In this study, we
propose a Global Learning with Local Preservation method (GL2P) for imputation of missing values in
microarray data. GL2P consists of two components: a local similarity measurement module and a global
weighted imputation module. The former uses a local structure preservation scheme to exploit as much
information as possible from the observable data, and the latter is responsible for estimating the missing
values of a target gene by considering all of its neighbors rather than a subset of them. Furthermore, GL2P
imputes the missing values in ascending order according to the rate of missing data for each target gene
to fully utilize previously estimated values. To validate the proposed method, we conducted extensive
experiments on six benchmarked microarray datasets. We compared GL2P with eight state-of-the-art
imputation methods in terms of four performance metrics. The experimental results indicate that GL2P
outperforms its competitors in terms of imputation accuracy and better preserves the structure of dif-
ferentially expressed genes. In addition, GL2P is less sensitive to the number of neighbors than other local
learning-based imputation methods.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Microarray technology can be used to simultaneously measure
the expression profiles of thousands of genes under different ex-
perimental conditions [1], and microarray data analysis has been
used to study disease genes [2,3], drug targets [4], and cancer
subtypes [5,6]. Various machine learning and statistical analysis
methods have been applied to microarray datasets for disease
prediction and cancer treatment [7]. Due to the high dimension-
ality of gene expression profiles (which may include thousands of
genes) and the small sample sizes of microarray experiments
(which may be limited to tens of samples), feature extraction and
feature selection are vital tools for microarray data analysis [8,9].
However, the existence of missing values in microarray datasets
poses a significant problem. Previous studies have shown that
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most publicly available microarray datasets have rates of missing
values that can reach 50% or even 95% [10]. The missing values
have adverse effects on gene expression clustering and classifica-
tion. Most of the existing feature selection, classification and
clustering techniques require a complete dataset as input, whereas
the intuitive solution of removing samples or genes with missing
values results in a dramatic loss of information, especially when
the removed genes play a dominant role in the biological pro-
cesses of interest. Therefore, there is a practical need to precisely
estimate missing values.

There are numerous human and non-human factors that can
lead to missing values in microarray data, ranging from the irre-
gular use of microarray technology and the contamination of mi-
croarray surfaces to non-specific hybridization and systematic er-
rors in the experimental procedure [11]. For example, in-
appropriate manual operations can blur the fluorescence image
and make it difficult to obtain accurate expression profiles. To
address such issues, additional replicates of the microarray ex-
periment can be performed. However, the high experimental costs
and lack of an effective repetition scheme make this method less
than ideal in practice [12]. To obtain a complete training set, some
studies have proposed replacing missing values with zeros,
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Fig. 1. Logical storage structure of microarray data.
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averaging the observed values for the same gene (column mean),
or averaging the observed values for the same sample (row mean)
[13]. Although these existing methods are efficient and easily
implemented, they fail to explore the latent data structure in-
formation such as gene co-expression and pathway relationships
between genes. Thus, simplistic missing value estimation leads to
large deviations from the true values.

In recent years, researchers have proposed a number of effec-
tive imputation methods, which can be broadly categorized into
four groups: biological knowledge-, global learning-, local learn-
ing-, and hybrid-based methods. Biological knowledge-based
methods make use of biologically validated domain knowledge,
such as sample categories, gene function networks, gene reg-
ulatory networks, and gene ontology, as prior information for the
target gene [14]. A major limitation of these methods is that they
rely heavily on domain-specific knowledge and fail to handle si-
tuations where there is less biological knowledge available for
new, under-explored cases. Global learning-based methods as-
sume that a covariance structure exists in the dataset and use that
information to estimate the missing values. Bayesian principal
component analysis imputation (BPCAimpute) and singular vector
decomposition imputation (SVDimpute) are examples of global
learning-based methods [15]. These methods are more suitable for
large microarray datasets and are sensitive to noise in the data.
Particularly, they often exhibit unsatisfactory performance if si-
milar local structures exist in the data [16]. In contrast to global
learning-based methods, local learning-based methods first at-
tempt to identify the similar local structures and then impute the
missing values using genes that are similar to the target genes [17].
For example, k-nearest-neighbor imputation (KNNimpute) was
among the earliest methods used to estimate the missing values of
a target gene by weighting the values of its k nearest neighbors
[18]. Other researchers proposed slightly different methods called
least squares imputation (LSimpute) and local least squares im-
putation (LLSimpute), both of which introduce a regression model
to build the relationships between the target gene and its neigh-
bors and then impute the missing values using neighbors and
associated regression coefficients [19,20]. Essentially, they select
similar genes and build a regression equation model, but these
steps are not jointly optimized, so they may not make full use of
the local structure. Additionally, they are unable to use the global
information provided by the data. Hybrid methods aim to take
advantage of both global learning and local learning based meth-
ods. Commonly used schemes include, but are not limited to,
linearly or non-linearly combining multiple imputation methods
[21], integrating different imputation methods under an ensemble
or semi-supervised learning framework [22], and building a pi-
peline using the output of an imputation method to initialize the
parameter values of another imputation method [23].

Even with these state-of-the-art methods, several issues re-
main to be addressed. First, in local learning-based methods, the
number of neighbors has to be specified. Because these methods
tend to select a small fraction of the available genes as the
neighbors, some potentially relevant genes may be missed. In
particular, an inappropriately specified number of neighbors can
dramatically degrade the performance of imputation and down-
stream analysis. Second, most of the existing methods process
these similar genes equally and do not weight the genes based on
their distances from the target gene. To address these issues, this
study makes the following contributions: (1) a Global Learning
with Local Preservation method (GL2P) is proposed to estimate the
missing values in gene expression profiles. Specifically, GL2P im-
putes the missing entries by recognizing the gene neighborhood
and calculating the weights of different genes. (2) A local similarity
metric is proposed to fully utilize the information provided by
observable data, and it is used to measure the relevance between
the target gene and its similar genes. In contrast to most existing
local learning-based methods that require neighbors with no
missing values, GL2P relaxes this requirement and allows genes
with missing values to be chosen as neighbors. (3) We propose a
novel method that can automatically determine the number of
similar genes to use. (4) A weighted multivariate linear regression
model is trained between the target gene and the selected similar
genes to estimate the missing entries of the target gene. In parti-
cular, we take gene importance into account and give more weight
to genes that are more relevant to the target gene and less weight
to genes that are less relevant. In addition, we exploit all genes
that are similar to the target gene rather than a small fraction of
the similar genes when constructing the regression model. This
strategy largely mitigates the problem of loss of information,
particularly for datasets with high missing rates.

The rest of this paper is organized as follows. Section 2 presents
the basic notation and illustrates the core components of GL2P. In
Section 3, we introduce four evaluation metrics. Extensive ex-
perimental results and an analysis of the results are presented in
Section 4. Section 5 concludes the paper and considers several
future research paths.
2. The proposed imputation method

In this section, after introducing the necessary notation and
definitions, we present the overall framework of the proposed
Global Learning with Local Preservation method. In the analysis of
gene expression profiles, we usually represent the microarray data
as a matrix, as shown in Fig. 1. In this study, we use ∈ ×G Rm n to
represent the matrix, where m is the number of samples, and n is
the number of genes. Specifically, we use …g g g, , , n1 2 to represent

the n genes and use …g g g, , , n1 2 ( ∈ ≤ ≤ )× i ng R , 1i
m 1 to indicate

their vector forms. We use …s s s, , , m1 2 to denote the m samples,
and …s s s, , , m1 2 ( ∈ ≤ ≤ )× i ms R , 1i

n1 are the corresponding vec-
tors. That is, = ( … ) = ( … )G g g g s s s, , , , , ,n m

T
1 2 1 2 . αi,j indicates that

there is a missing value at the i-th row and j-th column. For ex-
ample, α1,2 means that the second gene has a missing entry in the
first sample. The following section makes use of three definitions:

Definition 1 (target gene). In a microarray dataset consisting of
expression profiles of thousands of genes, we call a gene with at
least one missing value across all samples a target gene.
Definition 2 (candidate gene). In a microarray dataset consisting
of expression profiles of thousands of genes, all genes excluding
the target gene are called candidate genes. The collection of
candidate genes is a candidate gene set associated with the
target gene.
Definition 3 (similar gene). In a microarray dataset with thou-
sands of genes, we define a gene with a similar expression
pattern to the target gene as a similar gene. We define the col-
lection of similar genes as the similar gene set for the target
gene.
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For a specific target gene gt, its similar gene set is a subset of
the candidate gene set, and both may contain missing values. To
estimate missing values, the proposed imputation method GL2P
works by using the following steps: 1) selecting the target gene gt
with minimal missing rate, 2) identifying genes similar to gt from
the corresponding candidate gene set, 3) calculating the local si-
milarity measurements between gt and each of its similar genes,
and 4) building a regression model and using it to estimate the
missing values of gt. After these four steps, we impute all missing
entries in gt. Then, we choose another gene with minimal missing
rate as the next target gene gt and repeat the above operations
until no genes remain with missing values. Algorithm 1 presents
the pseudo-code of GL2P. In the next subsections, we explain the
four procedures in detail.

Algorithm 1. Pseudo-code description of GL2P.

In
O
1
2
3
4
5
6
7

8
9
1
1

put:
 Dataset G with missing values

utput:
 Complete dataset Gc without missing values
while has_missing_value(G) do

step 1:
select target gene gt with minimal missing rate;

step 2:
identify genes similar to gt using (2) and (3);

step 3: //local similarity measurement
calculate the distance between gt and each of its si-
milar genes using (5);

step 4: //impute missing values of gt
(4.1) build a regression model using (6);

0
 (4.2) estimate the missing values of gt using (10);

1
 endwhile

2
 return Gc;
1

2.1. Choosing the target gene

In the process of missing value imputation, there are several
imputation strategies that can be used. For example, we can
simply impute the missing values sequentially, from the first gene
to the last. We can also estimate the missing values randomly by
choosing a random gene with missing values as the target gene.
Considering the fact that the previously estimated values can be
used to impute the missing values of other target genes, we pro-
pose to impute the missing values in ascending order in terms of
the missing rates associated with target genes. The missing rate ri
of gene gi is calculated using Eq. (1),

= ( )r
l
m

, 1i
i

where li represents the number of missing values in gene gi, and
m is the total number of samples.

Furthermore, we divide the genes in G into two groups: the
incomplete gene set and the complete gene set. Assuming that n1
genes have missing entries, the incomplete gene set ∈ ×G Rm n

1
1 has

n1 incomplete genes, and the complete gene set ∈ ×G Rm n
2

2 con-
tains n2 genes without missing values (n¼n1þn2). For imputation,
we first choose the target gene gt with minimal missing rate from
the incomplete gene set and estimate its missing values. After
estimation, gt is added to the complete gene set and excluded from
the incomplete gene set.

2.2. Identifying genes similar to the target gene

The aim of this step is to determine which genes have similar
expression patterns to those of the target gene from the candidate
gene set. Not all candidate genes for a target gene are suitable for
missing value estimation. For example, given a target gene g1 with
a missing value in the first sample, if candidate gene g2 has a
missing entry in the first sample, then g2 is not a qualified
neighbor for g1. To filter out these unqualified and low-quality
candidate genes, GL2P uses the following two constraint condi-
tions to determine whether a candidate gene gv is a similar gene to
the target gene gt. Assuming that the indices of missing values for
gene g are idx(g), GL2P requires that the intersection between idx
(gt) and idx(gv) is not empty. For example, if gv has missing values
in the same sample as gt, gv provides no information to impute the
missing values of gt. Thus, GL2P first filters out the candidate genes
satisfying Eq. (2),

( ) ( ) ϕ∩ = ( )idx idxg g 2t v

In missing value imputation, the missing rate is an important
factor and is often used as an indicator of the quality of a candidate
gene. GL2P takes the missing rate associated with each candidate
gene into account. Specifically, it assumes that a candidate gene
with more missing values contributes less to the imputation, and it
filters out genes with missing rates larger than the average missing
rate using Eq. (3),

∑<
( )=

r
n

r
1

3
v

i

n

i
1 1

1

In this equation, ri is the missing rate of gene gi in G1, and n1 is
the number of genes with missing values in G1.

2.3. Local similarity measurement

After performing the steps discussed in Subsection 2.2, we
obtained a set of genes that are similar to the target gene gt. With
this set, we can use standard distance metrics to measure the si-
milarities between genes. Euclidean distance and Pearson corre-
lation coefficient are two commonly used similarity metrics.
However, problems arise when we directly apply these measure-
ments to gene expression profiles. First, if two genes with similar
patterns contain missing values, the existing similarity metrics
cannot be used. Discarding these genes inevitably leads to a loss of
information. Second, the missing rate is an important factor in
measuring the confidence of calculating gene similarity, and most
existing imputation methods fail to consider this. In this study, to
measure the relative importance of each similar gene to a target
gene, GL2P uses the following objective function (4) to calculate
the distance between gv and gt,

( )∑=
( )=

| ∩ |⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d f S l lg g, , ,

4
v

i

obs obs

t
i

v
i

v i
1

0

Here, obs indicates the indices of samples without missing
values for gt, obs0 indicates the indices of samples without missing
values for gv, lt is the number of observed values corresponding to
obs in gt, lv is the number of observed values corresponding to
obs∩obs0 in gv, and S is a similarity metric, such as Euclidean
distance or Pearson correlation coefficient. In this study, we use
Euclidean distance for similarity calculations, as expressed in
Eq. (5),

( )( ) ∑= = −
( )=

| ∩ |

d
l
l

S
l
l

g g g g,
5

v
v

t
t v

v

t i

obs obs

t
i

v
i

1

0 2

As shown in the above equation, in addition to the local in-
formation for gv, GL2P explicitly considers its missing data rate.
This helps us distinguish two genes with equal Euclidean distances
but with different missing rates.
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2.4. Missing value imputation with similar genes

Using the selected similar genes and their distances to the
target gene gt, GL2P trains a weighted linear regression model
considering gt and all its similar genes, as shown in Eq. (6),

∑β β β β= + + ⋯ + =
( )=

w w wg g g g w g
6

t
obs obs obs

k k k
obs

v
v v v

obs
1 21 1 2 2

1

Here, βv represents the regression coefficients ( ≤ ≤v k1 ), k is
the number of similar genes that satisfy (2) and (3), wv is the
normalized distance between gv and gt, which indicates the im-
portance of gv in predicting gt. In this study, we use a Gaussian
kernel to normalize the distance:

( )
=

− −
σ ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟w exp

d d

2 7
v

v min
2

Here, dv is the distance between gv and gt, dmin is the minimal
distance between gt and all of its similar genes, and s is the kernel
width, ranging from 0 to 1. Significantly, GL2P takes all similar
genes into account rather than a small subset of them, which
partially avoids loss of information and relieves users from having
to determine the optimal number of similar genes for imputation.
Moreover, a normalized distance metric can be used to normalize
the calculated distances onto the same scale interval, allowing
unbiased comparisons. In contrast to most of the existing methods
that treat all genes equally, GL2P assigns higher weights to genes
that are more similar to the target gene.

To obtain the regression coefficients of Eq. (6), the following
formulas (8) and (9) are presented,

∑ β−
( )β =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟wg gmin

8
t
obs

v

k

v v v
obs

1

2

v

( ) ( )
( )

β = … = ⋅

+

+
⎡

⎣

⎢⎢⎢

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎤

⎦

⎥⎥⎥
9

w
w

w

G Wg g g g g, , , ... ,v
obs

v
obs

vk
obs

k

t
obs obs

t
obs

1 2

1

2 3

where ( )+A is the pseudo-inverse of matrix A. Finally, we can es-
timate the missing values of gt using Eq. (10),

( )β β β= … … ( )
⎡⎣ ⎤⎦g g g g, , , , , , , 10t

miss
k v

miss
v
miss

vk
miss T

1 2 1 2

where miss represents the indices of samples that have missing
values in gt.
3. Evaluation metrics

To evaluate the effectiveness of GL2P in missing value im-
putation for microarray data, four performance metrics are used:
root mean square error, Pearson correlation coefficient, conserved
pairs proportion, and biomarker list concordance index. The first
two metrics are statistical analysis-related metrics, and the latter
Table 1
Description of experimental datasets.

Dataset Original dataset (genes*samples) Complete dataset (genes*samples

GDS38 7680*16 5282*16
GDS1761 9706*64 8849*64
GDS3835 27,648*48 5070*48
GDS4576 22,625*9 16,052*9
GDS4831 24,526*22 10,523*22
GDS3866 10,712*28 5716*28
two metrics evaluate the imputation methods based on biological
knowledge.

3.1. Root mean square error

Root mean square error (RMSE) is a statistical indicator used to
measure the overall deviation of estimated values from their cor-
responding true values. RMSE is defined using the following for-
mula (11),

∑ ∑= ^( ) − ( )
( )= =

⎡
⎣⎢

⎤
⎦⎥RMSE

Z
G i j G i j

1
, , ,

11i

m

j

n

ori
1 1

2

where Z indicates the total number of missing entries in G, Ĝ
represents a dataset with estimated values, and Gori is a complete
dataset that we use to generate G. Obviously, RMSE takes a value
larger than 0, and a smaller RMSE indicates better imputation
performance of the corresponding missing value estimator.

3.2. Pearson correlation coefficient

To measure how an imputation method maintains the micro-
array data structure, we use the Pearson correlation coefficient
(12) to evaluate an imputation method.

( )
=

^

^
( )

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

correlation coefficient
cov

std std

s s

s s

,

12

ori

ori

T T

T T

In this equation, sori
T is a sample in Gori, ŝ

T
is its corresponding

sample in Ĝ, (^ )cov s s, ori
T T is the covariance between the two sam-

ples, and ( )std sori
T represents the standard deviation of sori

T . The
larger the Pearson correlation coefficient, the better the original
data structure is maintained.

3.3. Conserved pairs proportion

Conserved Pairs Proportion (CPP) is a biological indicator that
measures the percentage of conserved genes between the clusters
of the original dataset and the imputed dataset. The number of
clusters is determined by following the principle that the first ten
important clusters contain at least 80% of all genes when applying
hierarchical clustering with the Wards’ minimum variance algo-
rithm [24]. Cj

ref denotes the j-th cluster, and Lj
ref represents the

corresponding gene list in the original dataset Gori. We randomly
generate a set of missing values in Gori and estimate these missing
values with an imputation method to obtain the imputed dataset

Ĝ. Here,
′

Cj
gen and

′
Lj

gen denote the ′j -th cluster and the corre-

sponding gene list in Ĝ, respectively. CPP is obtained using the
following formula (13),

∑=
( )=

=

CPP N n/ ,
13j

j P

j
1

) Data type Missing rate (%) Genes with missing values (%)

Time series 6.10 31.22
Non-time series 0.15 8.83
Non-time series 72.25 81.63
Non-time series 15.63 29.05
Non-time series 23.75 57.09
Mixed-time series 46.64 46.64
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where P is the number of clusters, n is the total number of genes,
and Nj is calculated using Eq. (14),

∑ ∑ δ= ′
( )′

′= …
∈ ′∈

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟N max ,

14
j

j P
i L i L

ii
1, ,

j
ref

j
gen

where δ ′ii is 1 if gene i and gene i′ are equal; otherwise it is 0. CPP
takes a maximal value of 1 if we obtain the same clusters in Gori
Fig. 2. RMSE of different imputation m
and Ĝ.
3.4. Biomarker list concordance index

The biomarker list concordance index (BLCI) is used to measure
the preservation of differentially expressed genes after imputation
[25]. Suppose Gsig is a collection of differentially expressed genes

in Gori, and Ĝsig is a collection of differentially expressed genes in Ĝ.
ethods with varying missing rates.
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BLCI is calculated as follows (15):

( ) ( )
( ) ( )

^ =
∩ ^

+
∩ ^

−
( )

⎜ ⎟⎛
⎝

⎞
⎠

BLCI G G
n G G

n G

n G G

n G
, 1

15
sig sig

sig sig

sig

sig
c

sig

c

sig
c

Here, n(˖) returns the number of genes in a set, Gsig
c is the

complement set of Gsig , and Ĝsig

c
is the complement set of Ĝsig . BLCI

uses the SAM algorithm to detect differentially expressed genes
with a false discovery rate of 5% [26]. BLCI has a maximal value of

1 if Gsig is equal to Ĝsig .
4. Experimental setting and results

4.1. Experimental settings

Experiments were conducted using six publicly available mi-
croarray datasets containing both time series and non-time series
data. A brief summary of the six datasets is presented in Table 1.
The last column shows the ratio of incomplete genes, which in-
dicates the varying degrees of missing values for the microarray
data. All experimental datasets can be downloaded from https://
www.ncbi.nlm.nih.gov/, and their brief descriptions are given
below.

(1) GDS38 comes from a study of cell-cycle-regulated genes in
Saccharomyces cerevisiae. There are 16 samples with 7680
genes, and samples were collected at different points in the
cell cycle within 7 min. GDS38 is a time series dataset [27].

(2) GDS1761 is a collection of 64 samples from 60 cell lines from a
variety of tissues and organs. Each sample consists of 9706
genes. It is a non-time series dataset [28].

(3) GDS3835 comes from the analysis of three pure and one hy-
brid species of Drosophila during four different developmental
stages (larval stage, early pupal stage, late pupal stage, and
Table 2
Experimental results of significance test on GDS38.

Missing rate (%) KNNimpute SKNNimpute IKNNimpute BP

1 o o o ¼
5 o o o ¼
10 o o o o
15 o o o o
20 o o o o

Table 3
Experimental results of significance test on GDS1761.

Missing rate (%) KNNimpute SKNNimpute IKNNimpute BP

1 o o o o
5 o o o o
10 o o o o
15 o o o o
20 o o o o

Table 4
Experimental results of significance test on GDS3835.

Missing rate (%) KNNimpute SKNNimpute IKNNimpute BP

1 o o o o
5 o o o o
10 o o o o
15 o o o o
20 o o o o
adult stage). Each species repeats these stages three times;
therefore, there are 48 samples with 27,648 genes in each
sample [29].

(4) GDS4576 consists of 9 samples from a study of young adults
after a 4-h exposure to live Candida albicans and heat-killed
Candida albicans. It is a non-time series dataset, and each
sample has 22,625 genes [30].

(5) GDS4831 comes from the study of the ubiquitin modulator
depletion effect on hepatocellular carcinoma cell lines. It is a
non-time series dataset with 22 samples and 24,526 genes
[31].

(6) GDS3866 comes from a study of yeast response to sudden
oxygen depletion. There are two subsets in the 28 samples:
the first 14 samples were taken at time points of 0 h, 0.2 h, 1 h,
3 h, 8 h, 24 h, and 72 h after sudden oxygen level shifts from
1% to 0%, and the rest of the samples were taken at time points
of 0 h, 0.2 h, 1 h, 3 h, 8 h, 24 h, 79 h after sudden oxygen level
shifts from 20% to 0%. It is a mixed-time series dataset with
10,712 genes [32].

To evaluate the effectiveness of GL2P with different missing
rates, we first obtained complete microarray data without missing
values by deleting genes with missing entries from the original
data, and we then randomly introduced artificial missing values to
the complete datasets with missing rates of 1%, 5%, 10%, 15%, and
20%, respectively. For comparison experiments, we compared our
proposed GL2P method with eight other state-of-the-art methods,
including KNNimpute [18], SKNNimpute [33], IKNNimpute [34],
LLSimpute [20], ShrinkageLLS [35], SLLSimpute [36], ILLSimpute
[37], and BPCA [15]. The first seven methods are based on the k-
nearest-neighbor approach and require selecting a value for the
parameter k. The last method, BPCA, is a global learning-based
method, and it uses Bayesian theory and principal component
analysis for missing value imputation. Specifically, SKNNimpute
and IKNNimpute are improved versions of KNNimpute that use
sequential and iterative imputation strategies; similarly,
CA LLSimpute ShrinkageLLS SLLSimpute ILLSimpute

¼ ¼ ¼ ¼
o o ¼ ¼
o o o o
o o o o
o o o o

CA LLSimpute ShrinkageLLS SLLSimpute ILLSimpute

o o o o
o o o o
o o o o
o o o o
o o o o

CA LLSimpute ShrinkageLLS SLLSimpute ILLSimpute

o o o o
o o o o
o o o ¼
o o o o
o o o o
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SLLSimpute and ILLSimpute are based on LLSimpute. ShrinkageLLS
incorporates a shrinkage algorithm to adjust the regression coef-
ficients. In contrast, GL2P can automatically determine how many
similar genes to use and considers the relative importances of si-
milar genes in estimating the missing values.

In GL2P, the kernel width s in Eq. (7) is the only parameter to
be set. In this study, we adopt the following strategy to determine
the value of s. GL2P generates candidates with the kernel width
value s ranging from 0 to 1 with a step size of 0.1 (s¼0.1, 0.2, …,
1). For each assignment, we introduce an artificial missing value p
in the observed values of the target gene, and according to other
observable values of the target gene, we can obtain an estimated
value p0 for p using Eqs. (9) and (10). Then, for each artificial
missing value in the target gene, we can obtain its corresponding
estimated value. Finally, we calculate their deviations from the
true observed values using Eq. (16).

∑ α α= − ^ (σ)
( )

⎡⎣ ⎤⎦deviation
16i

i i
2

In this equation, αi is the i-th observed value for the target
gene, and α̂ (σ)i is the corresponding estimated value for a given
value of s. Thus, among all the deviations for each assignment of
s, we select the optimal parameter value with minimal deviation.

4.2. Experimental results and analysis

4.2.1. Accuracy of the imputation methods
In this study, for each missing rate, we repeated the experi-

ments ten times for each imputation method and calculated mean
values across replicates. Fig. 2 presents the experimental results of
nine imputation methods on six microarray datasets. Fig. 2 shows
that the RMSE increases with the missing rates for all imputation
methods. This result is reasonable, as a higher percentage of
missing values indicates loss of more useful information and cre-
ates greater challenges for imputation. Clearly, GL2P consistently
outperforms the other eight competing methods, particularly in
cases with high missing data rates. Thus, the experimental results
demonstrate the effectiveness of GL2P for microarray data
imputation.

Among the k-nearest-neighbor-based methods, KNNimpute
gives the worst imputation accuracy. SKNNimpute outperforms
KNNimpute because it sequentially imputes the missing values
and can make use of previously estimated values. IKNNimpute
works in an iterative way to improve the quality of imputation and
outperforms KNNimpute and SKNNimpute. For the least squares-
Table 5
Experimental results of significance test on GDS3866.

Missing rate (%) KNNimpute SKNNimpute IKNNimpute BP

1 o o o o
5 o o o 4
10 o o o ¼
15 o o o ¼
20 o o o o

Table 6
Experimental results of significance test on GDS4576.

Missing rate (%) KNNimpute SKNNimpute IKNNimpute BP

1 o o o o
5 o o o o
10 o o o o
15 o o o o
20 o o o o
based methods, including LLSimpute, ShrinkageLLS, SLLSimpute,
and ILLSimpute, Fig. 2 shows that ShrinkageLLS does not con-
sistently exhibit better performance than LLSimpute; for example,
it shows worse performance than LLSimpute on GDS4576. In
comparison with LLSimpute, both SLLSimpute and ILLSimpute
show improvement in RMSE. We also observe that the least
squares-based methods tend to achieve better imputation accu-
racy than k-nearest-neighbor based methods. This indicates the
superiority of the least-squares principle over nearest-neighbor
techniques. For the global learning-based method, BPCA shows
similar performance to the least squares-based methods in most
cases. Compared with GL2P, BPCA has worse imputation perfor-
mance with the exception that BPCA achieves similar imputation
performance to that of GL2P on GDS3866, possibly because a
covariance structure exists in GDS3866. However, as the missing
rate increases, the latent covariance structure may be destroyed,
which limits the power of BPCA for effective imputation.

We used a t-test with a significance interval of 95% to de-
termine whether there was any difference between GL2P and its
competitors in terms of RMSE. In our experiments, differences
were considered significant if the p-value was less than 0.05. Ta-
bles 2–7 present the experimental results for the six datasets. The
symbol “o” in the tables indicates that GL2P exhibits a lower
RMSE, “4”indicates that GL2P performs worse, and “¼” indicates
that there is no significant difference between GL2P and the
competing method. A smaller RMSE reflects a lower deviation of
imputation. According to the results in Tables 2–7, we observe that
when the missing rate reaches 10%, GL2P gives a significantly
smaller RMSE than the other eight imputation methods. Specifi-
cally, the RMSE of GL2P is significantly smaller than the values of
KNNimpute, SKNNimpute and IKNNimpute on all experimental
datasets. Additionally, GL2P consistently has a smaller RMSE than
the other imputation methods on GDS1761 and GDS3835, re-
gardless of the missing data rate. Furthermore, on GDS3866, BPCA
shows results close to those of GL2P when the missing data rate is
less than 15%, but GL2P outperforms it as the missing rate reaches
20%.

4.2.2. Preservation of data structure
To show the effectiveness of different imputation methods in

preserving the original data structure, we conducted experiments
on each dataset with a representative 5% missing rate. Fig. 3 pre-
sents the experimental results of the preservation of data structure
for the nine imputation methods. In Fig. 3, we can see that GL2P
consistently outperforms the other eight imputation methods on
all experimental datasets, demonstrating that GL2P can better
CA LLSimpute ShrinkageLLS SLLSimpute ILLSimpute

¼ o ¼ o
¼ o ¼ ¼
o o o o
o o o o
o o o o

CA LLSimpute ShrinkageLLS SLLSimpute ILLSimpute

¼ ¼ ¼ ¼
o o o o
o o o o
o o o o
o o o o



Table 7
Experimental results of significance test on GDS4831.

Missing rate (%) KNNimpute SKNNimpute IKNNimpute BPCA LLSimpute ShrinkageLLS SLLSimpute ILLSimpute

1 o o o o ¼ o ¼ ¼
5 o o o o o o o 4
10 o o o o o o o o
15 o o o o o o o o
20 o o o o o o o o

Fig. 3. Comparison of different imputation methods on correlation coefficients.
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recover the missing values. For example, on GDS3866, the corre-
lation coefficients of GL2P range from 0.97 to 1. For the nearest-
neighbor-based methods, KNNimpute, SKNNimpute and IKNNim-
pute have worse performance than the other methods. For BPCA,
the performance is comparable to that of the least squares-based
methods but worse than that of GL2P.

Interestingly, considering the results of RMSE and the pre-
servation of data structure, we can see that methods with higher
RMSE may better preserve the data structure. For example, BPCA
has a higher RMSE than ILLSimpute on GDS4576, as shown in
Fig. 4. Comparison of different imputation m
Fig. 2b, but BPCA exhibits larger correlation coefficients than ILL-
Simpute, as shown in Fig. 3.e. This is because RMSE reflects the
overall degree of deviation of imputation and fails to show the
details, whereas correlation coefficients measure performance at
the sample level. Consequently, this motivates us to use these two
metrics together.

4.2.3. Conserved pairs proportion
In addition to RMSE and the preservation of data structure,

experiments involving the conserved pairs proportion (CPP) are
ethods on conserved pairs proportion.
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used to evaluate missing value imputation methods from the
standpoint of biological gene clustering. A higher CPP indicates
better imputation performance for the corresponding estimator.
Fig. 4 presents the experimental results of CPP for different im-
putation methods on the experimental datasets with varying de-
grees of missing rates.

In Fig. 4, the CPP of six datasets ranges from 30% to 70%,
showing that even a small missing rate can have a great impact on
gene clustering, which shows that missing values in gene ex-
pression profiles can greatly affect the downstream biological
analysis. A higher missing data rate has a greater effect on gene
clustering due to information loss. We can also see that CPP slowly
declines with increasing missing data rates. Unexpectedly, none of
the nine methods consistently shows a better CPP than the others.
Fig. 5. Comparison of different imputation met
For example, on GDS38, KNNimpute has the best CPP at a 5%
missing rate but has the worst CPP at a 15% missing rate. Similar
results were obtained in another study evaluating the impact of
missing value methods on clustering [38]. This similarity is mainly
because a smaller deviation of the estimated values from their true
values has a greater impact on the results of hierarchical clustering
and, thus, it leads to a smaller CPP. Compared with the other
competing methods, however, GL2P tends to have a stable CPP as
the missing data rate increases. This result shows that GL2P is less
sensitive to perturbations of the gene expression values from their
true values and can better preserve the clustering results.

4.2.4. Biomarker list concordance index
In this section, BLCI is used to evaluate the preservation of
hods on biomarker list concordance index.
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differentially expressed genes for different imputation methods.
Fig. 5 shows a clear trend that applies to all experimental datasets
for the nine imputation methods: a larger missing rate leads to a
lower BLCI, and BLCI decreases quickly as the missing data rate
increases. For example, at a missing data rate of 1%, most im-
putation methods result in a BLCI as high as 90%, even as high as
98%; but at a missing data rate of 20%, the BLCI decreases to 40%. It
is reasonable that larger missing rates are accompanied by the loss
of more useful information. In contrast to CPP, when BLCI is
Fig. 6. Parameter sensitivity analysis
calculated, only the differentially expressed genes are considered,
whereas CPP is calculated by considering all genes divided into
different clusters. Overall, GL2P and BPCA give better BLCI results
than other imputation methods, and BPCA yields a slightly higher
BLCI than that of GL2P at low missing data rates. At higher missing
data rates, GL2P performs better. This result demonstrates the
superiority of GL2P, which attempts to use as much information as
possible from the observable data. Additionally, the least-squares
based methods generally have a larger BLCI than the nearest-
to the number of similar genes.
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neighbor based methods, which is consistent with the experi-
mental results for RMSE and preservation of data structure.

4.2.5. Sensitivity to the number of similar genes
For local learning-based methods, including KNNimpute,

SKNNimpute, IKNNimpute, LLSimpute, ShrinkageLLS, SLLSimpute,
and GL2P, the number of neighbors used in estimating the missing
values plays a significant role in determining the imputation
quality. In this section, we conduct extensive experiments to in-
vestigate the impact of the number of neighbors on root mean
Fig. 7. The distribution of the number o
square error at varying missing data rates. We set up the experi-
ments with a missing rate of 5%, and the number of neighbors
ranged from 1 to 350. Fig. 6 presents the results of these tests.

In Fig. 6, the x-axis indicates the number of neighbors used in
estimating the missing values, and the y-axis indicates the per-
formance of each imputation method in terms of RMSE. The red-
dashed line “auto-GL2P” represents the results of GL2P that can
automatically determine the number of neighbors to use, and
“auto-GL2P” is used as a baseline method in these experiments.
GL2P in Fig. 6 corresponds to the method with a pre-assigned
f similar genes for each target gene.
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number of neighbors. In Fig. 6, we observe that for the least
squares-based methods, RMSE rises quickly when k is close to the
number of samples in the dataset, and RMSE decreases with an
increase in the number of considered neighbors. One possible
explanation is that when the number of neighbors considered
equals the number of samples, the solution to the pseudo-inverse
of matrix A in Eq. (9) is not fully optimized. Therefore, in practical
use, a larger number of neighbors are preferred for the least
squares-based methods. Regarding the nearest-neighbor-based
methods, KNNimpute, SKNNimpute and IKNNimpute achieve the
lowest RMSE when k is between 10 and 15. However, with in-
creasing k, the nearest-neighbor based methods become worse in
terms of RMSE because these methods use the distance metric to
measure the relative importance of each similar gene rather than
using a regression model to identify important genes. When more
similar genes are considered, they add noise to the nearest-
neighbor based methods, which inevitably leads to poor
performance.

As shown in Fig. 6, GL2P can yield a smaller RMSE as k increases
for each of the six datasets. The reason why GL2P shows better
performance than the least squares methods is that GL2P con-
siders not only the complete genes but also the incomplete genes
as potential similar genes for the target gene, which enables GL2P
to preserve as much useful information as possible and allows it to
exclude noisy genes. Making use of the incomplete genes in the
process of identifying similar genes helps improve the perfor-
mance of GL2P. Furthermore, auto-GL2P consistently outperforms
competing methods on all experimental datasets, and it can au-
tomatically determine the number of similar genes to use.

As mentioned above, GL2P can automatically determine the
number of similar genes to use for imputing missing values for a
target gene. We plotted the distribution of the number of similar
genes for each target gene, as shown in Fig. 7. The x-axis re-
presents the order in which the corresponding gene is imputed.
For example, a value of 1 means that the gene is the first one to be
imputed, and a value of 10 means that the corresponding gene is
the tenth one to be imputed. The y-axis represents the number of
genes associated with the target genes, and a higher value means
that the target gene has more similar genes. Fig. 7 indicates that
the number of similar genes for different target genes is not always
the same, although other local learning-based methods use the
same number of similar genes. Therefore, GL2P can adaptively
determine the optimal number of neighbors for different target
genes. In addition, we observe that the genes imputed in the late
phase have more neighbors than those in earlier phases because
GL2P uses a sequential imputation strategy that makes use of
observable information.

Overall, extensive experiments demonstrate that in terms of
root mean square error, GL2P outperforms eight state-of-the-art
imputation methods, including three nearest-neighbor-based
methods (KNNimpute, SKNNimpute, and IKNNimpute), four least
squares-based methods (LLSimpute, SLLSimpute, ILLSimpute, and
ShrinkageLLS), and one global learning-based method (BPCA).
Moreover, GL2P better maintains the structure of the original data
structure and better preserves the differentially expressed genes.
In addition, the experimental results show that GL2P is less sen-
sitive to the number of neighbors than other local learning-based
imputation methods. Finally, GL2P has the ability to adaptively
determine the number of neighbors to use for different target
genes so that it is not necessary to manually assign a constant
number of neighbors or to determine the optimal number via
cross-validation techniques.

5. Conclusions

It is critical to estimate missing values in gene expression
profiles to enable downstream analyses, such as gene selection,
gene clustering, and cancer diagnosis. This study proposes a global
learning with local preservation imputation method, named GL2P,
to estimate the missing values in microarray datasets. GL2P fol-
lows a sequential scheme by selecting the target gene with the
smallest missing rate each time rather than randomly selecting a
gene, which allows it to use the previously estimated values when
dealing with other target genes in the later stages. Moreover, we
designed two specific constraint conditions for automatically de-
termining the number of similar genes for each target gene, which
relieves users from having to set the optimal number of neighbors.
To evaluate the effectiveness of GL2P, we conducted extensive
experiments on six publicly available microarray datasets and
compared GL2P to eight state-of-the-art imputation methods, in-
cluding seven local learning-based methods and one global
learning-based method, in terms of four performance metrics. The
experimental results show that GL2P outperforms the other
methods in terms of imputation accuracy and effectively maintains
the structure of differentially expressed genes. The experimental
study further indicates that GL2P is less sensitive to the number of
neighbors.

In the future, there are several research paths worth exploring.
First, the distribution of missing values is an important factor for
evaluating an imputation method, and this study has considered
only a random set of missing values. Therefore, investigating the
relationship between the performance of an imputation method
and the distribution of missing values is an interesting topic.
Second, GL2P could be further applied to other fields that suffer
from missing values, including proteomics and clinical data
analysis.
A conflict of interest statement

None declared.
Acknowledgments

This work was supported in part by the China Postdoctoral
Science Foundation (No. 2016M592046), the International S&T
Cooperation Program of China (No. 2014DFA11310), and the “111
Project” of the Ministry of Education and State Administration of
Foreign Experts Affairs (No. B14025). The authors are very grateful
to the anonymous reviewers for their constructive comments and
suggestions for the improvement of this research.
References

[1] D.J. Lockhart, E.A. Winzeler, Genomics, gene expression and DNA arrays,
Nature 405 (2000) 827–836.

[2] M.S. Inkeles, P.O. Scumpia, W.R. Swindell, D. Lopez, R.M. Teles, T.G. Graeber, R.
L. Modlin, Comparison of molecular signatures from multiple skin diseases
identifies mechanisms of immunopathogenesis, J. Investig. Dermatol. 135
(2015) 151–159.

[3] R.S. Fehrmann, J.M. Karjalainen, M. Krajewska, H.J. Westra, D. Maloney,
A. Simeonov, et al., Gene expression analysis identifies global gene dosage
sensitivity in cancer, Nat. Genet. 47 (2015) 115–125.

[4] W. Wang, N.G. Iyer, H.T. Tay, Y. Wu, T.K. Lim, L. Zheng, P.K. Chow, Microarray
profiling shows distinct differences between primary tumors and commonly
used preclinical models in hepatocellular carcinoma, BMC Cancer 15 (2015)
828.

[5] O.A. Stefansson, S. Moran, A. Gomez, S. Sayols, C. Arribas-Jorba, J. Sandoval,
J. Eyfjord, A DNA methylation-based definition of biologically distinct breast
cancer subtypes, Mol. Oncol. 9 (2015) 555–568.

[6] E. Cuyàs, B. Martin-Castillo, B. Corominas-Faja, A. Massaguer, J. Bosch-Barrera,
J.A. Menendez, Anti-protozoal and anti-bacterial antibiotics that inhibit pro-
tein synthesis kill cancer subtypes enriched for stem cell-like properties, Cell
Cycle 14 (2015) 3527–3532.

http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref1
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref1
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref1
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref2
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref2
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref2
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref2
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref2
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref3
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref3
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref3
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref3
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref4
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref4
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref4
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref4
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref5
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref5
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref5
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref5
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref6
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref6
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref6
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref6
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref6


Y. Chen et al. / Computers in Biology and Medicine 77 (2016) 76–89 89
[7] J.E. Mirus, Y. Zhang, C.I. Li, A.E. Lokshin, R.L. Prentice, S.R. Hingorani, P.
D. Lampe, Cross-species antibody microarray interrogation identifies a
3-protein panel of plasma biomarkers for early diagnosis of pancreas cancer,
Clin. Cancer Res. 21 (2015) 1764–1771.

[8] M. Lenz, F.J. Müller, M. Zenke, A. Schuppert, Principal components analysis and
the reported low intrinsic dimensionality of gene expression microarray data,
Sci. Rep. 6 (2016) 25696.

[9] A. Wang, A. Ning, G. Chen, L. Lian, G. Alterovitz, Improving PLS–RFE based gene
selection for microarray data classification, Comput. Biol. Med. 62 (2015)
14–24.

[10] M.C. Souto, P.A. Jaskowiak, I.G. Costa, Impact of missing data imputation
methods on gene expression clustering and classification, BMC Bioinform. 16
(2015) 64.

[11] M.N. Arbeitman, E.E. Furlong, F. Imam, E. Johnson, B.H. Null, B.S. Baker, M.
A. Krasnow, M.P. Scott, R.W. Davis, K.P. White, Gene expression during the life
cycle of Drosophila melanogaster, Science 297 (2002) 2270–2275.

[12] A.J. Butte, J. Ye, G. Niederfellner, K. Rett, H.U. Häring, M.F. White, I.S. Kohane,
Determining significant fold differences in gene expression analysis, in: Pro-
ceedings of the Pacific Symposium on Biocomputing (PSB), February 2001, pp.
6–17.

[13] R. Jörnsten, H.Y. Wang, W.J. Welsh, M. Ouyang, DNA microarray data im-
putation and significance analysis of differential expression, Bioinformatics 21
(2005) 4155–4161.

[14] Y. Yang, Z. Xu, D. Song, Missing value imputation for microRNA expression data
by using a GO-based similarity measure, BMC Bioinform. 17 (2016) 10.

[15] S. Oba, M.A. Sato, I. Takemasa, M. Monden, K. Matsubara, S. Ishii, A. Bayesian,
missing value estimation method for gene expression profile data, Bioinfor-
matics 19 (2003) 2088–2096.

[16] A. Suyundikov, J.R. Stevens, C. Corcoran, J. Herrick, R.K. Wolff, M.L. Slattery,
Accounting for dependence induced by weighted KNN imputation in paired
samples, motivated by a colorectal cancer study, PLoS One 10 (2015) e0119876.

[17] G. Tutz, S. Ramzan, Improved methods for the imputation of missing data by
nearest neighbor methods, Comput. Stat. Data Anal. 90 (2015) 84–99.

[18] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani,
D. Botstein, R.B. Altman, Missing value estimation methods for DNA micro-
arrays, Bioinformatics 17 (2001) 520–525.

[19] T.H. Bø, B. Dysvik, I. Jonassen, LSimpute: accurate estimation of missing values
in microarray data with least squares methods, Nucleic Acids Res. 32 (2004)
e34.

[20] H. Kim, G.H. Golub, Missing value estimation for DNA microarray gene ex-
pression data: local least squares imputation, Bioinformatics 21 (2005)
187–198.

[21] S. Chattopadhyay, C. Das, S. Bose, A novel biclustering based missing value
prediction method for microarray gene expression data, in: Proceedings of the
2015 International Conference on Man and Machine Interfacing (MAMI), IEEE,
December 2015, pp. 1–6.

[22] H. Li, C. Zhao, F. Shao, G.Z. Li, X. Wang, A hybrid imputation approach for
microarray missing value estimation, BMC Genom. 16 (2015) s1.

[23] F. Shi, D. Zhang, J. Chen, H.R. Karimi, Missing value estimation for microarray
data by Bayesian principal component analysis and iterative local least
squares, Math. Probl. Eng. 16 (2013) 301–312.

[24] A.G. Brevern, S. Hazout, A. Malpertuy, Influence of microarrays experiments
missing values on the stability of gene groups by hierarchical clustering, BMC
Bioinform. 5 (2004) 114.

[25] S. Oh, D.D. Kang, G.N. Brock, G.C. Tseng, Biological impact of missing-value
imputation on downstream analyses of gene expression profiles, Bioinfor-
matics 27 (2011) 78–86.

[26] V.G. Tusher, R. Tibshirani, G. Chu, Significance analysis of microarrays applied
to the ionizing radiation response, Proc. Natl. Acad. Sci. 98 (2001) 5116–5121.

[27] P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. Anders, M. Eisen, P. Brown,
D. Botstein, B. Futcher, Comprehensive identification of cell cycle-regulated
genes of the yeast Saccharomyces cerevisiae by microarray hybridization, Mol.
Biol. Cell 9 (1998) 3273–3297.

[28] D.T. Ross, U. Scherf, M.B. Eisen, C.M. Perou, C. Rees, P. Spellman, V. Iyer, et al.,
Systematic variation in gene expression patterns in human cancer cell lines,
Nat. Genet. 24 (2000) 227–235.

[29] C.G. Artieri, R.S. Singh, Molecular evidence for increased regulatory con-
servation during metamorphosis, and against deleterious cascading effects of
hybrid breakdown in Drosophila, BMC Biol. 8 (2010) 26.

[30] R. Pukkila-Worley, F.M. Ausubel, E. Mylonakis, Candida albicans infection of
Caenorhabditis elegans induces antifungal immune defenses, PLoS Pathog. 7
(2011) e1002074.

[31] Y.H. Lee, J.B. Andersen, H.T. Song, A.D. Judge, D. Seo, T. Ishikawa, H.G. Woo,
Definition of ubiquitination modulator COP1 as a novel therapeutic target in
human hepatocellular carcinoma, Cancer Res. 70 (2010) 8264–8269.

[32] E. Rintala, P. Jouhten, M. Toivari, M.G. Wiebe, H. Maaheimo, M. Penttilä,
L. Ruohonen, Transcriptional responses of Saccharomyces cerevisiae to shift
from respiratory and respirofermentative to fully fermentative metabolism, J.
Integr. Plant Biol. 15 (2011) 461–476.
[33] K.Y. Kim, B.J. Kim, G.S. Yi, Reuse of imputed data in microarray analysis in-

creases imputation efficiency, BMC Bioinform. 5 (2004) 160.
[34] L.P. Brás, J.C. Menezes, Improving cluster-based missing value estimation of

DNA microarray data, Biomol. Eng. 24 (2007) 273–282.
[35] H. Wang, C.C. Chiu, Y.C. Wu, W.S. Wu, Shrinkage regression-based methods for

microarray missing value imputation, BMC Syst. Biol. 7 (2013) s11.
[36] X. Zhang, X. Song, H. Wang, H. Zhang, Sequential local least squares imputa-

tion estimating missing value of microarray data, Comput. Biol. Med. 38
(2008) 1112–1120.

[37] Z. Cai, M. Heydari, G. Lin, Iterated local least squares microarray missing value
imputation, J. Bioinform. Comput. Biol. 4 (2006) 935–957.

[38] M. Celton, A. Malpertuy, G. Lelandais, A.G. Brevern, Comparative analysis of
missing value imputation methods to improve clustering and interpretation of
microarray experiments, BMC Genom. 11 (2010) 15.
Ye Chen was born in Henan Province, China in 1991. He is now a graduate student
with School of Computer and Information, Hefei University of Technology. His re-
search interests include bioinformatics and data mining.
Aiguo Wang was born in Anhui Province, China in 1986. He received his Ph.D.
degree at Hefei University of Technology in 2015. He is now a post doctor with
School of Computer and Information, Hefei University of Technology. His research
interests include data mining, bioinformatics, and activity recognition.
Huitong Ding was born in Shandong Province, China in 1992. He received the B.Sc
at Hefei University of Technology in 2015. He has been taking successive post-
graduate and doctoral programs of study for pursing his Ph.D. degree since Sep-
tember 2015 with the School of Computer and Information, Hefei University of
Technology. His research interests include machine learning and bioinformatics.
Xia Que was born in Guangxi Province, China in 1978. She received her B.Sc and M.
Sc at Hefei University of Technology in 2000 and 2006, respectively. She is now a
Ph.D. candidate with School of Computer and Information, Hefei University of
Technology. Her research interests include data mining and machine learning.
Yabo Li was born in Gansu Province, China in 1989. She received her B.Sc at
Lanzhou University in 2011. Now she is a Ph.D. candidate with College of Life Sci-
ences, Lanzhou University. Her research interests include data mining and
bioinformatics.
Ning An was born in Gansu Province, China in 1971. He received his B.Sc and M.Sc
at Lanzhou University in 1993 and 1996, respectively, and Ph.D. at Pennsylvania
State University in 2002. He is now a professor with School of Computer and In-
formation, Hefei University of Technology. His research interests include ger-
ontechnology, healthcare informatics, and spatial information management.
Lili Jiang was born in Heilongjiang Province, China in 1983. She received her
doctoral degree at School of Information Science and Engineering, Lanzhou Uni-
versity in 2012. She is now an assistant professor at Umeå University. Her research
interests include data mining, natural language processing, and information
retrieval.

http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref7
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref7
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref7
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref7
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref7
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref8
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref8
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref8
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref9
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref9
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref9
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref9
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref10
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref10
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref10
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref11
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref11
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref11
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref11
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref12
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref12
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref12
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref12
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref13
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref13
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref14
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref14
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref14
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref14
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref15
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref15
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref15
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref16
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref16
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref16
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref17
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref17
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref17
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref17
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref18
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref18
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref18
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref19
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref19
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref19
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref19
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref20
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref20
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref21
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref21
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref21
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref21
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref22
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref22
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref22
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref23
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref23
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref23
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref23
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref24
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref24
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref24
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref25
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref25
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref25
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref25
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref25
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref26
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref26
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref26
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref26
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref27
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref27
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref27
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref28
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref28
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref28
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref29
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref29
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref29
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref29
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref30
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref30
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref30
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref30
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref30
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref31
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref31
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref32
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref32
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref32
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref33
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref33
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref34
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref34
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref34
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref34
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref35
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref35
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref35
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref36
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref36
http://refhub.elsevier.com/S0010-4825(16)30196-2/sbref36

	A global learning with local preservation method for microarray data imputation
	Introduction
	The proposed imputation method
	Choosing the target gene
	Identifying genes similar to the target gene
	Local similarity measurement
	Missing value imputation with similar genes

	Evaluation metrics
	Root mean square error
	Pearson correlation coefficient
	Conserved pairs proportion
	Biomarker list concordance index

	Experimental setting and results
	Experimental settings
	Experimental results and analysis
	Accuracy of the imputation methods
	Preservation of data structure
	Conserved pairs proportion
	Biomarker list concordance index
	Sensitivity to the number of similar genes


	Conclusions
	A conflict of interest statement
	Acknowledgments
	References




