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Abstract. Activity recognition is an important step towards automatically meas‐
uring the functional health of individuals in smart home settings. Since the
inherent nature of human activities is characterized by a high degree of complexity
and uncertainty, it poses a great challenge to build a robust activity recognition
model. This study aims to exploit deep learning techniques to learn high-level
features from the binary sensor data under the assumption that there exist discrim‐
inant latent patterns inherent in the low-level features. Specifically, we first adopt
a stacked autoencoder to extract high-level features, and then integrate feature
extraction and classifier training into a unified framework to obtain a jointly opti‐
mized activity recognizer. We use three benchmark datasets to evaluate our
method, and investigate two different original sensor data representations. Exper‐
imental results show that the proposed method achieves better recognition rate
and generalizes better across different original feature representations compared
with other four competing methods.

Keywords: Activity recognition · Smart homes · Deep learning · Autoencoder ·
Shallow structure model

1 Introduction

The rapid development of machine learning and mobile computing technologies makes
it possible for researchers to customize and provide pervasive and context-aware serv‐
ices to individuals living in smart homes [1]. On the other hand, due to the ever increasing
aging population all over the world and the high expenditure of healthcare cost, the
elderly healthcare raises us a serious social and fiscal problem. With the growing desire
of subjects to remain independent in their own homes, ambient assisted living (AAL)
systems that can perceive the states of an individual and corresponding context and act
on physical surroundings using different types of sensors and automatically recognize
human activities of daily living (ADLs) are in great needs [2, 3]. In such systems, accu‐
rately recognizing human activities such as cooking, eating, drinking, grooming and
sleeping is an important step towards independent living, which can be achieved by
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monitoring the function ability of the residents using various sensor technologies. Also,
activity recognition can potentially facilitate a number of applications in a home setting
such as fall detection, activity reminder, and welling evaluation [4, 5].

Activity recognition (AR) is a challenging and active research area [6], and different
types of sensing technologies have been explored by researchers to improve the recog‐
nition rate and adapt to different application scenarios. Generally, they can be mainly
grouped into three categories: vision-based (e.g. camera, video), wearable/carriable
sensor-based (e.g. accelerometer, gyroscope), and environment interactive sensor-based
methods (e.g. motion detector, pressure sensor, contact sensor) [7, 8]. Due to the inherent
non-intrusiveness, flexibility, low cost, and easy deployment, environment sensor-based
approaches are considered a promising way to assess individual physical and cognitive
health when privacy and user acceptance issues are considered [1]. Approaches
belonging to this category infer the ADLs performed by an individual by capturing the
interactions between an individual and a specific object. For example, we can use a
contact sensor to record whenever the medicine container is open or closed for the
application of adherence to medication. In sensor-based activity recognition, the output
of an AR system is a stream of sensor activations [7, 9]. We can then treat activity
recognition as a time series analysis problem, and the aim is to identify a continuous
portion of sensor data stream associated with one of the preselected known activities.
The widely used approach to AR is to apply the supervised learning with an explicit
training phase, which mainly consists of three stages [10, 11]. First, a stream of sensor
data is divided into segments, in which a sliding window technique is often used.
Specifically, a window with a fixed time length or fixed number of sensor events is
shifted along the stream with (non-) overlapping between adjacent segments. The next
step is to extract features from the segments and transform the raw signal data into feature
vectors, followed by the classifier construction with these features. The last task, called
recognition phase, is to use the trained classifier to associate a stream of sensor data with
a predefined activity. From the view of pattern recognition and machine learning, appro‐
priate feature representation of sensor data, suitable choice of classifier and its parameter
settings are crucial factors that determine the performance of AR [12]. Although
researchers have proposed a number of models to recognize ADLs, however, most of
existing AR approaches usually rely on hand-crafted features such as mean, variance,
correlation coefficients and entropy, and this may result in loss of information. Also,
most classifiers used have been shown to have shallow structures, hence it is difficult
for them to discover the latent non-linear relations inherent in features [13]. Furthermore,
in most studies, feature extraction and classifier training are treated as two separate steps,
so they are not jointly optimized. Consequently, without the guidance of classification
performance, the best way to design and choose feature descriptors is not clear, and we
may fail to obtain satisfactory accuracy without the exploration of feature extraction.

In recent years, deep learning techniques have gained great popularity and been
successfully applied in various fields such as speech recognition and face recognition
due to its representational power. These techniques enable the automatic extraction of
features from the original low-level features without any specific domain knowledge
but with a general-purpose learning procedure. In this study, to improve the activity
recognition performance, we propose to exploit deep learning techniques to discover
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the latent useful information inherent in the original features, and integrate feature
learning and classifier training into an architecture to jointly optimize them. Specifically,
we use a denoising autoencoder to learn the underlying feature representation from
unlabeled data, and the obtained features are then used as the inputs of a top classifier.
This enables us to unify feature learning and classifier training in a single pipeline and
further to fine-tune the model parameters using labeled data in order to obtain a robust
model.

The rest of this paper is structured as follows. Section 2 briefly reviews related work
in activity recognition. We then illustrate the autoencoder model, the pre-training and
fine-tuning scheme, and the proposed activity model in Sect. 3. In Sect. 4, experimental
setup and results are presented. The last section concludes this study with a short
summary and discussion.

2 Related Work

To improve the performance of activity recognition and enable its wide applications in
real world scenarios, researchers have conducted considerable work in exploring various
sensing technologies and designing a number of methods to model and recognize human
activities [7]. It has been shown that different types of sensor modalities are effective
for recognizing different activities. Vision-based approaches can provide a better recog‐
nition rate, but the use of camera or video is not practical in many indoor environments
particularly when the privacy issue is considered [14]. Moreover, vision-based
approaches face technical challenges arising from light, distance from cameras, occlu‐
sion and low object recognition rate, which largely hinder their wide use. In the past few
years, due to the rapid development of information technology, a variety of sensors are
designed and used for human activity recognition due to their flexibility, low cost, and
less intrusiveness [15]. These sensors can be categorized into wearable sensors and
environment interactive sensors. In the former case, commonly used sensors that can be
worn or carriable include accelerometer, gyroscope, GPS, and RFID-readers (used
together with RFID tags). For example, Bao and Intille used five small biaxial acceler‐
ometers that were worn simultaneously on different parts of the body to recognize twenty
activities. By collecting experimental data from twenty volunteers and extracting time-
domain and frequency-domain features, they compared the recognition rate of three
different classifiers and showed that the decision tree algorithm achieved the best
performance with an accuracy of 84.0 % [16]. With the increasing processing and
communication power of mobiles devices, most smartphones that are embedded with
built-in GPS, accelerometers and gyroscopes are used for activity recognition due to the
fact that they are less intrusive to subjects and that no additional equipment is required
for data collection and procession [17, 18]. For example, Dernbach et al. demonstrated
the possibility of using the inertial sensor data collected from android-based smart
phones to recognize simple activities such as biking, climbing, driving, lying, sitting,
walking, running and standing, as well as complex activities such as cleaning, cooking,
medication, sweeping, washing and watering [19]. Besides these, RFID technology
provides a solution to activity recognition as well, because they can capture the
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interaction between an individual and the objects. For example, Kim et al. built an indoor
healthcare monitoring system to locate and track the elderly in real time by capturing
the interaction between subjects (an individual wearing a RFID reader) and the tagged
objects with RFID technology [20]. Philipose et al. applied RFID technology, data
mining and a probabilistic engine for fine-grained activity recognition based on the
interaction between objects and subjects [9].

Although wearable sensor based approaches can obtain satisfactory performance, it
is difficult for them to be widely applied in residences because this kind of method
requires users to wear or carry corresponding sensors all the time. Therefore, they are
actually intrusive and may bring inconvenience to individuals when performing ADLs.
In contrast, environment interactive sensors with inherent non-intrusive characteristics
have proven applicable to the home setting when privacy and user acceptance are
concerned [1]. For example, Tapia et al. built an activity recognition system installed
with a set of simple state-change sensors, and then deployed their system in two houses
equipped with seventy-seven and eighty-four sensors, respectively, and collected data
for fourteen days to show its feasibility in AR [1]. van Kasteren et al. carried out a
research to recognize seven different activities in a home setting via fourteen binary
sensors and obtained an accuracy of 79.4 % [21]. In different studies, several models
have been used to recognize activity such as Naïve Bayes [1], hidden markov model [2],
support vector machine [22], Bayesian networks [23], and sparse coding [24]. One
common feature of these models is that they all have shallow structures and may not
capture the complex non-linear relations among features [13]. Also, to analyze the
complex human activities, it is expected to extract over-complete and discriminant
features from sensor data, and traditional methods rely on domain knowledge to extract
features and few consider to learn features from data [12]. Moreover, feature extraction
and classifier training are taken as two separate steps and not jointly optimized in most
of these methods. All of these issues motivate us to explore new ways to improve the
performance of activity recognition.

3 Proposed Method for Activity Recognition

3.1 Autoencoder

The autoencoder is a type of artificial neural networks that consist of three layers: input
layer, hidden layer and output layer (see Fig. 1), with the constraint that the target values
of the output layer are equal or approximate to the inputs during training. An autoencoder
aims to learn a latent representation h(x) of the input vector x. Suppose N and k denote
the number of input units and the number of hidden units, respectively. Given a N-
dimensional input vector x, the autoencoder transforms it to a latent representation

 through a deterministic mapping (1),

(1)
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Fig. 1. The autoencoder architecture. The number of units in hidden layer is not necessarily less
than that in the input layer.

where  is a matrix containing the weights from the input units to the
hidden units, b(1) represents the bias of the hidden units, and  is the activation function
in each units. One of the most commonly used non-linear activation functions is sigmoid
function shown mathematically as,

(2)

We then reconstruct the input x from the latent representation h(x) using (3) and try
to minimize the difference between x and .

(3)

where  contains the weights from the hidden units to the output units, and
b(2) represents the bias of the output units. In such way, we can obtain a new feature
representation h(x) of x. Of note, the number of units in the hidden layers can be larger
or less than the input dimension, enabling a larger exploration of non-linear relations.

With the aim to obtain a robust feature representation, Vincent et al. proposed the
denoising autoencoders that try to reconstruct original data from a corrupted input with
a local denoising criterion [25]. The corrupted inputs can be generated by adding random
noises to the original inputs or randomly choosing a proportion of them and setting them
to be zero. In this study, we use the denoising autoencoder as the building block of the
proposed activity recognition model.

3.2 Stacked Autoencoder

Recent advances in deep learning show that a deep or hierarchical architecture can
contribute to obtaining more complex and non-linear relations underlying in data when
compared with these models with shallow structures that contain zero or only one hidden
layer [26]. A stacked autoencoder (SAE) is such a hierarchy model, in which an
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autoencoder is a building block [27, 28]. In SAE, each layer is fully connected to its
adjacent layer and there is no connection between units in each layer. In such architec‐
ture, the objective function of SAE is to reconstruct the inputs at the output layer. Similar
to the autoencoder, each hidden layer of SAE is actually a high-level representation of
the input. Interestingly, the number of units in a hidden layer can be equal to, larger or
less than the input dimension. This enables us to sufficiently explore different high-level
feature representations in a flexible way.

In training a stacked autoencoder, conventional gradient-based optimization
methods, such as SGD and L-BFGS, suffer from the gradient diffusion and can easily
be trapped into a poor local optimum on a network with randomly initialized weights
and biases. To alleviate this problem and improve convergence rate, Hinton et al.
proposed a greedy layer-wise learning process to learning a deep belief network and
experimentally showed its good performance [27]. In such methods, we train each
network separately rather than train them together, and the output of one network is the
input of its following network. Specifically, we use the training data as inputs of an
autoencoder to learn the first hidden layer, and then use the first hidden layer as input to
learn the second hidden layer, and so on. Generally, assume that there is a stacked
autoencoder with n layers and the first layer is the original data (training set). For the
k-th autoencoder, W(k) are the weights from the input units to the hidden units, and b(k)

are the biases of the hidden layer. The greedy layer-wise scheme performs the following
two steps iteratively.

(4)

(5)

where z(m) is the input of the m-th layer, a(m) is the activation of the m-th layer, and a(1) = x
when m = 1. Obviously, a(n) is the inner-most feature representation of interest. The
above process is called pre-training because it works in an unsupervised way (without
using corresponding labels).

3.3 Fine-Tuning the Activity Recognition Model

In order to perform activity recognition, the features learned in the stacked autoencoder
are used with a set of labeled data to build a classifier. Accordingly, we can stack another
output layer (classifier layer) on top of the SAE to classify an input. In this case, the
feature vector encoded in the last hidden layer is the input of a learning algorithm in the
classifier layer, and various classifiers are available for use. Figure 2 presents the overall
architecture of an activity recognition model when the softmax classifier is used, in
which the number of units in the classifier layer equals the number of activity classes.

To improve the performance of activity recognition, we further optimize the activity
recognition model in a supervised manner. Specifically, we initialize the weights and
biases of the deep network with values obtained in the pre-training process, and use the
back propagation with gradient descent algorithm to optimize the model parameters.
Prior researches show that such a strategy helps escape from the poor local optimum
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and improve the time performance [28]. This procedure is called fine-tuning and works
in a supervised manner (with labeled data involved).

To determine the optimal learning parameters and the network layout (e.g. how many
hidden layers and the number of units in each hidden layer), besides the fine-tuning, we
employ the grid search strategy and choose the best network structure as the final AR
model via cross validation.

4 Experimental Results and Analysis

4.1 Experimental Datasets

To evaluate the performance of the proposed activity recognition model built on deep
learning techniques, we conducted experiments on three publicly available datasets
collected from three smart homes equipped with various simple sensors, respectively.
Each of the smart homes housed one resident performing ADLs in it. For the first smart
home (D1), there are three rooms equipped with fourteen sensors in total. Sensor data
stream was collected over a period of twenty-five days and ten activities were observed,
resulting in 1229 sensor events and 292 activity instances. For the second smart home
(D2), thirteen activities were observed during a period of fourteen days in an apartment
installed with twenty-three sensors. As a result, there are totally 200 activity instances
consisting of 19,075 sensor events. The third smart home (D3) was monitored for nine‐
teen days, and 344 activity instances and 22,700 sensor events were collected. All infor‐
mation regarding the experimental dataset used in this study is briefly summarized in
Table 1, and can be found in [29] for other details. Noticeably, all the sensors used are
simple state-change sensors, including motion detector sensor, mercury contact, contact

Fig. 2. Illustration to the activity recognition model with a stacked autoencoder and a softmax
classifier. The last layer is the classifier layer, and the number of units equals to the number of
activities of interest. The probability output determines the label of an input, where c indicates
the c-th label. x1, x2,…, xn-1 and xn are a dimension of the original feature representation, each
hidden layer is a high-level representation of the original data, and the last hidden layer is retained
as the input of the classifier layer.
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switch sensor, pressure mat, and float sensor. So, each dataset consists of binary temporal
data that denote the activation of sensors.

Table 1. Experimental dataset description

Dataset D1 D2 D3
Setting Apartment Apartment House
#resident 1 1 1
Resident age 26 28 57
#rooms 3 2 6
#days monitored 25 14 19
#sensors 14 23 21
#activities 10 13 16
#sensor events 1229 19,075 22,700
#activity instances 292 200 344

4.2 Experimental Setup and Results

The sensor data stream was first divided into segments by shifting a fixed length, non-
overlapping sliding window of sixty seconds as suggested by van Kastern et al. [21].
Then a N-dimensional feature vector  was extracted from each
segment, in which N is the total number of sensors installed in a smart home and each
dimension of  corresponds to a physical sensor. In our experiments, the original
features of the sensor data can be represented in two forms: binary representation and
numerical representation. The numerical representation method records the number of
firings of a sensor during a specific time slice, while the binary representation method
records whether a sensor fired at least once during the interval, and the value of a
dimension is one if the corresponding sensor fired and zero otherwise. For the evaluation,
we performed leave one day out cross validation, in which one full day of sensor data
is used to test the classifier performance and sensor data of the remaining days are used
for classifier training. We repeat the above process the number of days times and report
the average results. Specifically, we evaluate the performance of the proposed model in
terms of the following two metrics, the time-slice accuracy and the class accuracy, which
can be calculated as follows.

(6)

(7)

where I(a == b) is the indicator function returning 1 if a equals b and 0 otherwise, M is
the total number of sensor data segments in the test data, Nc denotes the number of
segments belonging to class c, inferred(n) is the inferred label of segment n, and true(n)
is the true label of segment n. In our study, rather than explore a large number of
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autoencoders, a two-layer stacked denoising autoencoder (SDAE) is used. Also, we set
the number of units in the hidden layer ranging from five to one hundred with a step size
of five, and set the percentage of masking noise being 0.5. In addition, we compare the
proposed activity recognition model with other four commonly used baselines, including
Naïve bayes (NB), hidden markov model (HMM), 1-nearest-neighbor (KNN), and
support vector machine with linear kernel (SVM). These four predictors with shallow
structures directly use the binary representation and numerical representation rather than
the learned high-level features as the inputs. For KNN, we use one nearest neighbor to
decide the label of a test sample.

Tables 2, 3 and 4 present the experimental results on the three datasets, respectively.
For each, we studied two different original feature representations and reported the average
time-slice accuracy and class accuracy of the leave one day out cross validation. From
Table 2, we observe that SDAE outperforms other four methods in terms of both time-slice
accuracy and class accuracy whichever the original feature representation is adopted.
Specifically, SADE obtained a time-slice accuracy of 85.32 % and a class accuracy of
49.91 % compared to the 59.11 % time-slice accuracy and 48.46 % class accuracy of the
commonly used probability-based HMM in the case of binary representation. When using
the numerical representation, SDAE achieved 85.52 % time-slice accuracy and 53.42 %
class accuracy compared to the 59.73 % time-slice accuracy and 43.3 % class accuracy of
HMM. For NB classifier, which is built on the basis of conditional independence among
features, it performed poorly whichever feature representation was used. This indicates that
there exist underlying relations among these features. Also, instance-based learning method
KNN also failed to give good results, and consistently obtains the lowest time-slice accu‐
racy and class accuracy. From Table 3, we can observe that deep learning based
approaches outperformed their competing methods in time-slice accuracy. Although they
failed to achieve the best class accuracy, their difference is quite small. For instance, SDAE
obtained a class accuracy of 43.30 %, which was 1.21 % less than the best 44.51 % of SVM.
Similar conclusions can be drawn from Table 4.

Table 2. Experimental results on dataset D1.

Method NB HMM 1NN SVM SDAE
Binary Time-slice (%) 77.14 59.11 33.10 83.88 85.32

Class (%) 42.62 45.48 32.43 48.14 49.91
Numerical Time-slice (%) 77.03 59.73 33.30 83.95 85.52

Class (%) 38.43 43.35 33.06 48.18 53.42

Table 3. Experimental results on dataset D2.

Method NB HMM 1NN SVM SDAE
Binary Time-slice (%) 80.35 63.23 55.73 82.60 84.16

Class (%) 32.47 44.66 30.47 41.76 39.92
Numerical Time-slice (%) 80.50 66.79 59.03 81.82 85.61

Class (%) 24.83 28.79 39.46 44.51 43.30

Human Activity Recognition in a Smart Home Environment 37



Table 4. Experimental results on dataset D3.

Method NB HMM 1NN SVM SDAE
Binary Time-slice (%) 46.47 26.48 27.73 44.56 50.04

Class (%) 16.84 17.22 19.81 21.33 21.14
Numerical Time-slice (%) 41.44 27.37 30.82 42.70 54.82

Class (%) 11.17 11.21 24.98 25.45 22.08

Overall, we can see that: (1) SDAE outperforms other four competing methods in
terms of time-slice accuracy. In class accuracy, deep learning methods achieve better
performance than NB, HMM, and 1NN when numerical representation is adopted, and
obtain similar performance to others in the case of binary representation. (2) Deep
learning based approaches are more robust to the choice of the original feature repre‐
sentation in comparison with other activity recognition models. For example, HMM
obtained a class accuracy of 35.8 % in binary representation, decreased by 8.0 %
compared to that of the numerical representation. This indicates that deep learning tech‐
niques generalize better across different original feature representations and can poten‐
tially relieve users of the reliance on domain knowledge to design and select features.
Particularly, it should be noted that in this study, we do not fully explore the power of
latent feature learning, since we only explore the deep learning architecture with two
hidden layers and small number of units in each layer.

5 Conclusions

Wireless sensor network technology has great potential to be widely used in smart homes
for human-centric applications due to its non-intrusiveness, low cost, and easy deploy‐
ment. In activity recognition, researchers have conducted a wealth of work and proposed
various models, while few explore how to learn useful features and to jointly optimize
feature extraction and classifier construction. In this study, we present a deep learning
based activity recognition model that uses an autoencoder to learn useful features from
sensor data stream and unifies feature extraction and activity recognition in a single
framework. To demonstrate the effectiveness of the proposed approach in activity
recognition, we conducted experiments on three publicly available human activity
recognition datasets and compared it with other four traditional methods in terms of
time-slice accuracy and class accuracy. Experimental results show that our proposed
method outperforms the competing methods, indicating its potential in human activity
recognition. For the future work, we plan to further optimize the proposed model by
varying the number of hidden layers and units in each layer, and study other feature
learning methods.
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