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ABSTRACT
Benefitting from the development of pervasive computing, recent
years have witnessed a variety of meaningful human-centric ap-
plications, where automating the recognition of human activities
plays a central role in bridging the gap between sensing data and
high-level services. Accelerometer-based activity recognizer often
remains a priority due to its recognition performance, low costs,
and portability, however, few studies systematically investigate how
to extract and use features from the time-series sensor data and
further compare their discriminant power. To this end, we herein
propose two different ways of extracting features and exploring
their combinations. Specifically, we take as a resultant axis or sepa-
rate channels the accelerometer axes and then extract axes-resultant
and axis-wise features. Afterwards, we evaluate the cases where
the two feature sets are used separately or jointly. Finally, we con-
duct comparative experiments on two public activity recognition
datasets with five different classification models in terms of four
performance metrics. Results show that the use of axis-wise fea-
tures outperforms its competitor in the majority across the datasets
and that their joint use generally leads to enhanced accuracy.
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1 INTRODUCTION
The rapid development of pervasive computing, internet of things,
artificial intelligence, and sensor technology facilitates a wealth
of human-centric applications that range from smart homes, am-
bient assisted living, and elderly health care, to human computer
interaction, rehabilitation, and smart city [1], where the automatic
recognition of human activities plays an essential role in bridging
the gap between the raw sensor data and high-level applications
[2, 3]. However, since human behavior is typically characterized by
the inherent complexity, it remains a critical challenge to develop a
robust activity recognizer [4, 5]. For example, different people could
perform one activity in different ways (i.e., inter-subject variation)
and even an individual could do the same activity differently at
different places and time (i.e., intra-subject variation). Besides, there
exist similar, concurrent, and interleaved activities [6].
Accordingly, researchers have explored a variety of sensing units
and designed a wealth of recognition models to adapt to different
application scenarios. According to the used sensing units, we can
group them into vision-, ambient sensor-, and wearable sensor-
based methods [2], where wearable sensor-based methods have
the advantage of high portability, low costs, robustness to environ-
ments, and being suitable for both indoor and outdoor scenarios in
contrast to ambient sensor- and vision-based methods. Particularly,
the miniature and increasing processing power of sensing units
further extends their applicable scope. Commonly used sensing
units include WIFI, gyroscope, accelerometer, Bluetooth, and heart
rate chip, where accelerometer is perhaps the most commonly used
one in implementing an activity recognition supported system. For
example, Kwapisz et al. used the cell phone accelerometer to design
an activity recognizer [7]. Zappi et al. proposed an accelerometer-
based activity recognizer to infer manipulative gestures of a car
maintenance assembly-line worker [8].
Furthermore, from the perspective of underlying models, we can
broadly group existing activity recognizers into data-driven and
knowledge-driven models [2]. The latter typically use expert do-
main knowledge (such as ontology, semantic map, and logical rea-
soning) to describe human activities. Hence, they have limited
capacity in handling new cases. In contrast, data-driven models use
the collected (un)annotated sensor data to train an activity recog-
nizer for classifying test data. Particularly, based on the activity
recognition chain, how to extract features from raw sensor data
and how to use these features largely determine the performance
of an activity recognizer [9]. Even though deep learning model has
the capability of automatically learning features from raw data, it
demands huge amounts of computational resources and also suffers
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Figure 1: Proposed Activity Recognition Model.

from interpretability [10]. Besides, there are studies demonstrat-
ing better accuracy of using hand-crafted features than using deep
learning.
Accordingly, researchers have proposed to extract features from
different domains (e.g., time domain, frequency domain, as well
as wavelet) with the aim to capture the important characteristics
of human activities [11]. For example, Kwapisz et al. used mean,
standard deviation, time between peaks, mean resultant acceleration,
mean absolute difference, and binned distribution features. Except
the mean resultant acceleration, they extracted features from each
axis and then concatenate them for use [7]. Lübbe et al. calculated
the magnitude of the sensor values and obtained the mean, root
mean square, signal energy, standard deviation, autocorrelation, sig-
nal magnitude area, and spectral entropy [11]. Although researchers
have done considerable work in obtaining and using features, few
studies, to the best of our knowledge, systematically study how to
extract features from the multi-axis accelerometer data and further
compare their discriminant power from the perspective of infor-
mation fusion. Therefore, in this study, we propose two different
ways of extracting features from raw signals and evaluate their
use in activity recognition. The main contributions of this work
include: (1) We present two different ways of extracting features
from the raw time-series accelerometer readings (i.e., axis-wise ver-
sus axes-resultant methods) and further evaluate their power in the
situations where they are used separately or jointly. In addition,
we compare the effectiveness of the time-domain and frequency-
domain features. These help researchers to better extract and exploit
features in optimizing an activity recognizer. (2) We conduct com-
parative experiments on two activity recognition datasets with five
classification models to avoid selection bias. Results show that the
use of axis-wise features generally achieves better recognition per-
formance compared to the use of resultant accelerometer features
and that their joint use remains a priority in enhancing accuracy.
The rest of this paper is structured as follows. Section 2 illustrates
the proposed activity recognition model and how to extract features.
Section 3 details the experimental setup and results, followed by
the conclusion section.

2 PROPOSED ACTIVITY RECOGNITION
MODEL

2.1 Activity Recognition Model
Figure 1 presents the data-driven human activity recognition chain
(ARC) that consists of the training stage and prediction stage. In the

training stage, we first divide the raw sensor data into segments us-
ing the sliding window technique and then extract various features
from each segment to return a feature vector for training an activity
recognizer AR. Obviously, feature extraction plays an important
role in ARC and we here explore different ways of extracting and
using features, as illustrated in next subsection. During prediction,
the test data are first segmented using the same sliding window
as the one used in the training stage and then the features are
extracted and organized into a feature vector. Finally, the activity
recognizer AR infers the activity label.

2.2 Feature Extraction
After segmenting the time-series sensor readings, we extract fea-
tures from each segment to return a feature vector. For an accelerom-
eter with s axes {ax1, ax2, . . ., axs}, we adopt the following steps to
analyze the segment.

2.2.1 Axis-wise Feature Extraction. We take as a channel each axis
of the accelerometer, extract features from each axis, and then
concatenate them for use. Particularly, time-domain and frequency-
domain features can be extracted. For time-domain features, we use
median, maximum, minimum, mean, standard deviation, maximum-
minimum, median absolute deviation, zero crossing rate, twenty-five
percent quantile, and seventy-five percent quantile. In addition, we
use the Pearson correlation coefficient between each two of the s
axes.

Afterwards, we apply the fast Fourier transform (FFT) to get the
frequency coding of raw signals. We extract the direct component,
the five peaks and corresponding positions of the five peaks, en-
ergy, four amplitude features and four shape features (i.e., skewness,
kurtosis, mean, and standard deviation).

2.2.2 Axes-resultant Feature Extraction. We first calculate the resul-
tant axis and then extract features. That is, for a s-axis accelerometer,
we obtain the resultant acceleration,

a =

√∑s

i=1
a2i (1)

and then extract time-domain and frequency-domain features as did
in the above subsection (but not including the correlation coefficient
between two axes).

2.2.3 Feature Fusion. We can combine the axis-wise and axes-
resultant features from different views (i.e., different axes) and
different domains (i.e., time-domain and frequency-domain), such as
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the joint use of axis-wise and axes-resultant time-domain features,
and the joint use of time-domain and frequency-domain features
from the resultant axis.

3 EXPERIMENTAL SETUP AND ANALYSIS
3.1 Experimental Setup
To evaluate the power of different feature sets in training an activity
recognizer, we perform comparative experiments on two publicly
available activity recognition datasets. The first dataset UCI-HAR
was collected by thirty volunteers who carried a waist-mounted
smartphone embedded with a tri-axis accelerometer and gyroscope
and performed six predefined activities (sitting, standing, lying,
walking, go-upstairs, and go-downstairs) [12]. For the purpose of
this study, we only use the accelerometer. We divide UCI-HAR data
into segments with a 2.56s half-overlap sliding window and extract
features from each segment to get a feature vector for subsequent
analysis. UCI-HAR contains separate training set and test set, where
the former is used to train an activity recognizer and the latter is
used to test its power. The second dataset SKODA was collected
by tri-axis accelerometers from a car maintenance assembly-line
worker [8]. Its task is to recognize ten manipulative gestures (write
on notepad, close hood, check gaps on the front, open hood, close left
front door, close both left doors, checking steering wheel, open left
front door, open and close trunk, and check trunk gaps). The sensors
have a sampling rate of 96 Hz, and we use one accelerometer placed
on the right upper arm and segment the raw sensor data with a 2s
half-overlap sliding window. We then extract features from each
segment to obtain a feature vector. The five-fold cross validation
is used to generate independent training sets and test sets and we
report the average results.
As for feature extraction, we extract those features as discussed
in subsection 2.2. Five commonly used classification models with
different metrics are utilized to train activity recognizers in order
to avoid selection bias. Those models include one generative model
(naïve Bayes (NB)), two discriminant models (k nearest neighbor
with k = 1 (KNN) and decision tree (DT)), and two ensemble models
(AdaBoost and random forest (RF)). We take as the performance
metrics the accuracy (Acc), precision (Prec), recall (Rec), and F1
score, where F1 = 2*precision*recall/(precision + recall) [13, 14].

3.2 Experimental Results
Extensive comparative experimental results of the two activity
recognition datasets are given in Tables 1 and 2. The first column
refers to the used features, where time denotes time-domain, freq de-
notes frequency-domain, tf means the time-domain and frequency-
domain, rslt denotes the resultant axis, sprt means axis-wise one,
and comb refers to the use of both resultant axis and axis-wise
features. For example, rslt_time means the time domain features of
resultant axis, sprt_freq stands for the frequency domain features
obtained from each axis, and comb_tf indicates the joint use of
axis-wise and axes-resultant time- and frequency- domain features.
For better presentation, we give accuracy, precision, and F1, and
results are grouped by the used classification models. Typically, for
each classifier, the best accuracy in each domain is bolded and the
best accuracy for each classification model is underlined.

Tables 1 and 2 correspond to the results of UCI-HAR and SKODA, re-
spectively, from which we observe that the use of axis-wise features
generally obtains higher accuracy than the use of axes-resultant fea-
tures. For example, on UCI-HAR, RF obtains the accuracy of 75.34%
for rslt_time, 81.62% for sprt_time, and 78.55% for rslt_freq, 82.42%
for sprt_freq. This is mainly because there exists loss of information
in obtaining the resultant acceleration from separate axes. Second,
we see that the joint use of axis-wise and axes-resultant features gen-
erally outperforms their single use. This indicates that the axis-wise
features and resultant acceleration features possibly contain com-
plementary information. Third, mixed results are obtained in com-
paring the power of time-domain features and frequency-domain
features. Specifically, the use of axis-wise frequency-domain fea-
tures outperforms the use of axis-wise time-domain features on
UCI-HAR in the majority, while it is the opposite case on SKODA.
Fourth, we observe that RF remains a priority in training an activity
recognizer compared with NB, KNN, DT, and AdaBoost.
Furthermore, we present the confusion matrix to evaluate the ef-
fectiveness of different feature sets in classifying human activities.
Due to limited space, we only show the confusion matrix of UCI-
HAR where RF is used for illustration purpose, as shown in Figure
2. The key-value pairs are defined as: {1: walking, 2: upstairs, 3:
downstairs, 4: sitting, 5: standing, 6: lying}. The columns indicate
the true activity labels and the rows are the inferred activity labels.
From Figure 2, we observe that the joint use of axis-wise and axes-
resultant features generally better discriminates activities having
similar sensor readings. Similar results can also be observed for
SKODA.
Besides, we compare the proposed method with relevant previous
studies. On UCI-HAR, compared with the 88.29% accuracy of hi-
erarchical feature selection [6] and the 94.79% accuracy of deep
learning-based model [15], the proposed method obtains the accu-
racy of 87.07%. Notably, though lower, only the accelerometer is
used in our study rather than the use of both accelerometer and
gyroscope. On SKODA, compared with the 92.91% accuracy [13],
91.2% accuracy and 93.10% accuracy obtained with deep learning
[16], the proposed method obtains 96.30% accuracy, which indi-
cates its power and potentially motivates users to carefully exploit
features.

4 CONCLUSIONS
Accelerometer-based activity recognition plays an essential role in
a variety of pervasive computing applications such as human com-
puter interaction, healthcare, smart homes, and security, where the
extraction and use of features greatly determines the performance
of an activity recognizer, which remains a great challenge to current
study. Thus, we conduct a systematical study to investigate differ-
ent ways of extracting features from raw sensor signals (axis-wise
versus axes-resultant) in terms of different views (i.e., time-domain
and frequency-domain) and to further compare their combinations.
Finally, comparative experiments are conducted on two public activ-
ity recognition datasets. Results show that compared to the use of
features from resultant axis, the use of axis-wise features achieves
better recognition accuracy in the majority of cases and also show
that the joint use of them generally leads to improved performance,
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Table 1: Experimental Results on UCI-HAR with Different Features and Classifiers

Features NB KNN DT AdaBoost RF
Acc Prec F1 Acc Prec F1 Acc Prec F1 Acc Prec F1 Acc Prec F1

rslt_time 67.02 66.64 67.95 68.29 67.79 68.38 70.73 70.56 70.91 75.94 75.70 76.24 75.34 75.08 75.61
sprt_time 79.65 78.77 79.92 68.83 68.26 68.87 79.72 79.42 79.55 82.33 82.07 82.39 81.62 81.34 81.61
comb_time 80.69 79.80 80.98 66.62 66.28 66.89 80.12 79.79 79.83 83.53 83.36 83.64 83.43 83.22 83.43
rslt_freq 56.70 57.99 61.65 61.18 61.21 62.09 72.67 72.20 72.60 78.32 77.67 78.24 78.55 77.94 78.56
sprt_freq 77.58 77.02 78.92 79.99 79.48 80.24 81.59 81.02 81.31 82.96 82.74 83.07 82.43 82.13 82.46
comb_freq 80.09 79.49 81.21 80.15 79.87 80.44 82.96 82.59 82.73 87.64 87.41 87.59 87.34 87.08 87.26
rslt_tf 70.67 70.59 72.09 59.74 60.05 60.94 73.61 73.45 73.78 79.35 79.17 79.63 79.89 79.69 80.12
sprt_tf 81.52 80.85 82.27 79.52 79.11 79.92 81.56 81.39 81.53 86.40 86.22 86.42 86.37 86.20 86.42
comb_tf 83.70 83.02 84.25 80.32 79.99 80.77 81.66 81.28 81.66 86.80 86.67 86.88 87.07 87.00 87.18

Table 2: Experimental Results on SKODA with Different Features and Classifiers

NB KNN DT AdaBoost RF
Acc Prec F1 Acc Prec F1 Acc Prec F1 Acc Prec F1 Acc Prec F1

rslt_time 42.84 48.34 47.30 55.57 57.74 58.67 57.42 59.48 59.78 68.81 70.96 70.85 68.44 70.57 70.55
sprt_time 76.76 78.54 79.12 92.14 92.07 91.97 87.44 86.86 86.87 95.62 95.16 95.09 95.44 94.81 94.77
comb_time 76.81 78.83 79.29 92.75 92.83 92.70 87.56 86.94 87.09 96.14 95.69 95.67 96.17 95.52 95.48
rslt_freq 41.94 46.47 46.92 29.91 31.64 31.96 62.20 63.96 63.98 72.20 73.39 73.63 72.11 73.17 73.36
sprt_freq 63.13 66.30 67.56 59.85 62.04 62.74 85.33 85.02 85.14 93.37 93.10 93.17 93.11 92.65 92.67
comb_freq 65.73 68.47 69.55 72.31 72.78 73.15 85.77 85.46 85.46 93.70 93.27 93.32 93.92 93.59 93.63
rslt_tf 45.64 50.24 50.64 29.91 31.64 31.96 65.81 67.24 67.28 78.04 78.70 78.82 78.24 78.91 78.94
sprt_tf 74.60 76.55 77.57 59.85 62.04 62.74 88.04 87.53 87.63 96.12 95.78 95.79 95.95 95.44 95.44
comb_tf 76.08 77.87 78.87 72.31 72.78 73.15 87.64 87.65 87.75 96.14 95.70 95.72 96.30 95.80 95.82

which indicates that axis-wise and axes-resultant features contain
complementary views to a certain extent.
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Figure 2: Confusion Matrix on UCI-HAR with Different Types of Features Using RF.
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