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Abstract—Heart sound analysis provides a non-invasive and
cost-effective method for identifying and studying various heart
diseases. However, when new categories emerge in dynamic
environments, traditional heart sound classification models
generally require retraining and suffer from catastrophic
forgetting. To address this, this study proposes a heart sound
classification model via class-incremental learning (HSCIL) that
integrates knowledge distillation, data replay, and dynamic
network expansion techniques to reuse an existing classifier.
Specifically, residual temporal convolutional networks are used
as the backbone and dynamically expanded to include new classes.
Additionally, MFCC features rather than raw heart sound
samples are used for data replay. Knowledge distillation is also
adopted to maintain consistency between outputs of the new
model and old model. Finally, HSCIL is evaluated on a dataset
with eight categories and compared with other four classification
models. Experimental results show that HSCIL achieves 97.03%
accuracy and 1.11% forgetting rate.
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I. INTRODUCTION

Cardiovascular disease (CVD) remains the leading cause of
death worldwide, claiming over 17 million lives each year.
Therefore, early detection and timely intervention of CVD are
crucial for alleviating the burden of these diseases. Heart sound
analysis is a non-invasive and cost-effective diagnostic tool in
revealing heart conditions such as arrhythmias, valvular
diseases, and congenital heart defects [1]. However, the
accuracy of heart sound analysis heavily depends on the
clinician's expertise, which is often limited, especially in
resource-constrained settings. Therefore, automating this
process using artificial intelligence has great significance.

Though recent advances in machine learning and deep
learning have significantly improved automatic heart sound
classification [2], current methods face challenges when
applied to dynamic and open environments (e.g., new heart
sound categories may emerge over time). Considering that
most of existing heart signal analysis models are static and

have fixed output categories, if a model is trained to recognize
"normal" and "arrhythmic" heart sounds, it cannot recognize
new categories such as "coronary artery disease" without
retraining. Retraining with new data not only requires
substantial data but also risks catastrophic forgetting (that is,
the model forgets previously learned knowledge) [3]. To
address these challenges, incremental learning offers a
promising solution, allowing the model to gradually adapt to
new classes while retaining knowledge of previously learned
classes. This approach mimics human learning, enabling the
integration of new information without extensive retraining.

Class-incremental learning methods can be broadly
categorized into regularization-based, data replay-based,
knowledge distillation-based, and network architecture-based
methods. Regularization-based methods add constraints to loss
functions to prevent models from forgetting old tasks. For
example, elastic weight consolidation (EWC) reduces
catastrophic forgetting by estimating the importance of each
parameter and penalizing significant changes to these
parameters during training on new tasks [4]. Data replay stores
and replays subsets of old data during training on new tasks to
refresh the model's memory of prior knowledge. For example,
Rebuffi et al. proposes the incremental classifier and
representation learning (iCaRL) method that uses a nearest
sample classification strategy and stores old class samples to
prevent forgetting [5]. Matthias et al. combines the nearest
center classifier and data replay to address class incremental
learning tasks in the presence of concept drift [6]. Knowledge
distillation-based methods maintain the consistency of the
outputs between the new and old classification models while
handling new tasks. For example, learning without forgetting
(LwF) uses knowledge distillation to retain prior knowledge
while learning new tasks [7]. Learning without memorizing
(LwM) uses attention mechanisms to select important features
[8]. Network architecture-based methods modify network
architecture. For example, dynamic expandable networks
(DEN) selectively grow network capacity by adding neurons or
layers as needed to effectively learn new tasks. DEN
dynamically determines its network capacity during training to
learn compact overlapping knowledge-sharing structures
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between tasks, preventing semantic drift by splitting and
replicating units and adding timestamps [9].

Despite its great potential, there is currently a lack of
research on incremental learning for heart sound classification.
Motivated by previous studies, we in this study propose a class-
incremental learning based continually evolved heart sound
classification model, named HSCIL, that combines network
expansion, knowledge distillation and data replay to reuse an
existing classifier. The main contributions of this study are as
follows:

(1) We propose a class-incremental learning framework for
heart sound classification that combines knowledge distillation,
data replay, and dynamic network expansion to learn new
categories of heart sound signals while preventing catastrophic
forgetting. Particularly, MFCC features are used as an example
set of old classes during the incremental learning phase, and
knowledge distillation is employed to ensure consistency
between outputs of the new model and the old model.

(2) The effectiveness of the HSCIL model is validated
through extensive experiments. Experimental results show that
HSCIL outperforms its competitors in terms of accuracy and
forgetting rate.

II. METHOD

Fig. 1 presents the proposed heart sound classification
model via class-incremental learning (HSCIL), where
knowledge distillation [7], data replay [5], and dynamically
expanding network structure [9] are integrated into the model.
First, during the incremental learning process, we maintain the
model’s memory of old classes by constructing and using an
old class exemplar set (i.e., data replay, DR). For each old class,
we  do  not  store  raw  samples  of  the  old  class  but  store  Mel-
frequency cepstral coefficients (MFCC) features. Particularly,
to facilitate feature learning, we extract first-order difference
(ΔMFCC) and second-order difference (Δ2MFCC) of MFCC to
encode the heart sound signals. Then, the residual temporal
convolutional network (TCN) is used as the backbone network
to better learn complex spatial-temporal dependencies among
the heart sound signals.

Second, to maintain consistency between outputs of the
new model and old model, we combine the cross-entropy loss
(Lce) and distillation loss (Lkl).  The purpose of distillation loss
is to force the student model (new model) to learn new tasks
while retaining knowledge of old tasks by introducing the soft
targets of the teacher model (old model) during training. The
loss L of  a  training  sample x is the weighted sum of the
classification loss Lce and distillation loss Lkl.

(1 )kl ceL L L < ≥ ∗ , ≥                     (1)

where α is a weighting factor to balance the distillation loss
and cross-entropy loss.

Lce is the standard cross-entropy loss, as shown in (2).
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hot ground-truth label, and p is the prediction probability.

Lkl measures the difference between prediction
distributions of the student model and the teacher model, as
shown in (3).
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, where Cold is the set of old classes, and the temperature
parameterσ is used to soften the probability distribution. The
higher the temperature is, the smoother the distribution is. pi is
the prediction distribution of teacher model and qi is the
prediction distribution of student model. The use of 2σ is to
balance the loss function and restore the impact of the scaled
temperature parameter on the gradient.

Third, considering that new heart sound classes are
continuously learned, we expand the network structure by
adding a new layer for every N new classes to improve its
feature representation capability (N = 3 in our study).

III. EVALUATION AND RESULTS

A. Datasets and data preprocessing
To evaluate the effectiveness of the proposed model, we

compile and merge publicly available heart sound datasets
along with our private heart sound dataset. These public
datasets include the 2012 Classifying Heart Sounds Challenge
sponsored by PASCAL, the normal and abnormal heart sound
library in Frontiers in Bioscience, the Murmur Quiz database
on the heart sound auscultation training website, and the
Yaseen dataset. The following steps are performed to
preprocess heart sound signals. First, the raw signals are
processed using a fifth-order Butterworth filter with a
frequency range of 25 to 400 Hz to smooth the signals. Next,
the filtered signals are downsampled to 2000 Hz and
segmented into 5-second audio segments using a sliding
window method with a window step size of 2.5 seconds. Then,
MFCC and its first-order and second-order differences are
extracted from each segment to form feature vectors. The
experimental dataset, as shown in Table 1, consists of 8 types
of heart sound signals, including 1040 Normal samples, 255
mitral stenosis (MS), 307 mitral regurgitation (MR), 360 aortic
stenosis (AS), 271 mitral valve prolapse (MVP), 246 Atrial
Fibrillation  (AF),  208  Extra  Heart  Sounds  (EHS),  and  356
Murmur cases.

219

Authorized licensed use limited to: Foshan University. Downloaded on October 12,2024 at 04:01:11 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1. Network structure of the proposed model.

TABLE 1. STATISTICS OF THE HEART SOUND DATASETS

Classes Normal MS MR AS MVP AF EHS Murm
ur

Total 1040 255 307 360 271 246 208 356

B. Experimental setup
Four classic class-incremental learning algorithms are used

as competitors: Finetune (FT) that directly fine-tunes the
model, iCaRL, Learning without Forgetting (LwF), and
Retraining that retrains the model. These algorithms use
resnet32 as the classifier. We train the models on a server
equipped with an NVIDIA GeForce RTX 4090 GPU and an
Intel (R) Core (TM) i7-13700KF 3.42GHz CPU. The Adam
optimizer is used to update the network parameters, which are
initialized by the Xavier normal initializer. The batch size is
empirically set to 32, and the learning rates for both the old
model and the main model are 0.001. The network is trained
from scratch for 50 epochs. For data replay, we store ten
exemplar samples for each category. All categories in the
dataset are shuffled randomly, with 2 categories in the first
task, and the remaining categories are for incremental learning
with  a  step  size  of  1  (that  is,  only  one  new  class  arrives  for
each incremental learning). Performance evaluation metrics
are average incremental accuracy A , average incremental
forgetting rate F , incremental accuracy curve, and forgetting
curve.

1
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i
i
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T <

<  (6)

, where At is  the  incremental  accuracy  in  the tth incremental
stage and T is the total number of incremental learning stages.
Incremental accuracy refers to the classification accuracy of
the current model on all seen classes.
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, where Ft is the forgetting rate in the tth incremental stage.
1, , 1 , ,max ( )

Κ

i
t t k t i k if a a⊆ ,< ,  refers to the definition of

forgetting for the ith task after learning k tasks  ( i k; ), where

am,n is  the  accuracy  of  the  model  on  the nth task after
completing the mth task.

C. Experimental results
In this section, we first present the experimental results

comparing our method with baseline methods and perform an
ablation study on the components of HSCIL.

1) Comparison experiment
In this study, we compare the performance of our method

with other four classic methods. Table 2 lists the average
incremental accuracy and average incremental forgetting rate,
with the best results shown in bold. Fig. 2 reports the setting
where two classes are taken as the first task, and the remaining
classes are divided into incremental tasks of one class each.

From Table 2 and Fig. 2, we can see that using Finetune to
fine-tune in class incremental learning tasks leads to the model
focusing only on new class information while ignoring old
class information, with average accuracy and average
forgetting rates of 88.33% and 8.38%, respectively. That is,
Finetune suffers from catastrophic forgetting, resulting in the
worst performance. LwF introduces knowledge distillation
loss during the model updating process, establishing
supervision of the new model by the old model to resist
catastrophic forgetting. iCaRL uses exemplar sets on the basis
of LwF to augment the training set samples at each stage and
better utilizes the preserved old class samples. The average
incremental accuracy of LwF and iCaRL methods is 93.69%
and 94.86%, respectively, which greatly improves the model's
performance compared to Finetune, demonstrating the
effectiveness of data replay and knowledge distillation loss in
incremental learning processes. Retraining the prediction
model with both new class sample data and existing class
sample data achieves the average accuracy of 94.98%, higher
than the other three methods at the cost of higher training time.
Fourth, we can see that HSCIL performs better than iCaRL.
This is mainly because HSCIL combines knowledge
distillation loss and dynamically adjusting the model structure.

In the forgetting rate curve in Fig. 2(b), the stability of
HSCIL in incremental tasks can be seen. The average accuracy
and average forgetting rate in incremental tasks are 97.03% and
1.11%, respectively, achieving the best performance in all
experimental settings. This is mainly because HSCIL maintains
the model's memory of old classes, uses distillation loss to
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guide the new model's output, and dynamically adjusts the
network structure to enhance its feature representation
capability.

TABLE 2. EXPERIMENTAL RESULTS OF DIFFERENT ALGORITHMS

Model Average
accuracy (%)

Average forgetting
rate (%)

training time
(min)

FT 88.33 8.38 75.27
iCaRL 94.86 3.76 91.08
LwF 93.69 4.78 52.84

HSCIL (ours) 97.03 1.11 102.62
Retraining 94.98 - 196.84

(a) Accuracy (b) Forgetting
Figure 2. Performance comparison of different algorithms.

2) Ablation study
In  this  section,  we  perform  ablation  experiments  to

evaluate the effectiveness of each component of HSCIL: using
only data replay (HSCIL-DR), using only knowledge
distillation (HSCIL-KD), and using only dynamically
expanding network (HSCIL-DEN) structure. For the ablation
experiments, we use the temporal convolutional network as the
backbone. Besides, considering that data may be unavailable
due to data loss or privacy issues in real-world environments,
we can only use knowledge distillation and dynamically
expanding network (HSCIL-KDDEN) structure.

TABLE 3. PERFORMANCE COMPARISON OF DIFFERENT COMPONENTS OF
HSCIL

Model Average accuracy (%) Average forgetting rate (%)
HSCIL-DR 95.30 1.83
HSCIL-KD 95.41 1.67

HSCIL-DEN 95.57 2.85
HSCIL-KDDEN 96.42 1.62

HSCIL 97.03 1.11

(a) Accuracy (b) Forgetting

Figure 3. Performance comparison of different components of HSCIL.

Table 3 and Fig. 3 give the experimental results. These
results indicate that HSCIL achieves the best performance in
terms of average accuracy and average forgetting rate. For
example, HSCIL-DR achieves average accuracy of 95.30%,
lower than the performance of other HSCIL components.
Second, HSCIL achieves average accuracy of 97.03%, higher
than 95.30% of HSCIL-DR, 95.41% of HSCIL-KD, and
95.57% of HSCIL-DEN. Third, considering practical
environments, HSCIL-KDDEN is our best choice, with
average accuracy 0.61% lower than HSCIL and average
forgetting rate 0.51% higher than HSCIL. We can also see that
HSCIL-KDDEN performs stably in incremental tasks. The
average accuracy of HSCIL-KDDEN is 1.01%, higher than
HSCIL-KD; the average forgetting rate is 1.23%, lower than
HSCIL-DEN.

IV. CONCLUSION

To better adapt existing heart sound analysis models to an
"open world", we propose a heart sound classification via
class-incremental learning model that combines knowledge
distillation, data replay, and dynamic network expansion
techniques towards better learn new heart sound categories of
heart sound signals while preventing catastrophic forgetting.
Specifically, the residual temporal convolutional network is
used and the MFCC features are used as the example set of old
classes for data replay. Knowledge distillation loss is also
employed and the network structure is dynamically expanded
to enhance its feature representation capabilities. Finally,
comparative experiments are conducted and compared with
other four models. Results show that the proposed model
outperforms its competitors.
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