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HierHAR: Sensor-Based Data-Driven
Hierarchical Human Activity Recognition
Aiguo Wang , Shenghui Zhao, Chundi Zheng, Huihui Chen, Li Liu , and Guilin Chen

Abstract—Pervasive computing greatly advances the auto-
matic recognition and understanding of human activities
and effectively bridges the gap between the low-level sen-
sor signals and high-level human-centric applications. The
inherent complexity of human behavior, however, inevitably
poses a huge challenge to the design of a robust activity
recognizer, especially in classifying similar activities. In this
study, we present a hierarchical framework, named HierHAR,
that infers on-going activities in a multi-stage process for
better distinguishing similar activities and improving the
overall performance. Specifically, we propose a data-driven
approach, rather than heavily rely on prior domain knowledge,
to automatically determining the relationships among activi-
ties. Afterwards, we use the relationships to organize the activities into a tree structure and accordingly construct and train
a tree-based activity recognition model. Furthermore, we train a graph-based model that aims to reduce the compounding
errors induced by the prediction process of the tree-based model. Finally, extensive comparative experiments are
conducted on public datasets and results demonstrate the power of HierHAR in facilitating the automatic organization of
activities and the design of hierarchical recognizers without prior knowledge about activities. Besides, the graph-based
activity recognizer generally generalizes better across different scenarios and outperforms the tree-based model.

Index Terms— Pervasive computing, activity recognition, data-driven, information fusion.

I. INTRODUCTION

THE rapid development and seamless integration of perva-
sive computing and sensing technology has greatly facil-

itated the automatic monitoring and understanding of human
behavior and further enabled the provision of meaningful
human-centric applications that range from chronic disease
management, rehabilitation, wellness evaluation, fitness track,
to medication adherence and building energy management
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in the context of smart homes [1], ambient assisted living
systems [2], smart building [3], sports and exercise [4], and
among others [5]. One of the key components of these
applications is to accurately and automatically infer the on-
going human activities, where activity recognition functions as
middleware between the low-level sensor readings and various
high-level services [6], [7]. However, due to the inherent
complexity of human behavior, human activities are character-
istically associated with diversity, concurrency, and similarity,
which makes it difficult to develop satisfactory activity recog-
nizers [8], [9]. Typically, there exists inter-subject variation
in the way of doing an activity, where an activity recognizer
that works well on one user probably fails to generalize
well to others [10]. We also suffer from intra-subject vari-
ation [7], and one may perform concurrent and interleaving
activities [11]. Furthermore, there are activities that can trigger
similar sensor readings, even though the activities have differ-
ent semantics [8]. Consequently, this would confuse an activity
recognizer and lead to degraded performance. Therefore, how
to automate the recognition of activities remains a challenging
yet rewarding topic that has attracted considerable attention
from many fields and deserves further investigation [12].

With the aim to achieve higher recognition rates and better
adapt to different demand-oriented scenarios, researchers have
explored a variety of sensing technologies and a wealth of
models [6]. According to the used sensing units, we group the
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existing methods into three categories: wearable sensor-based
methods [7], vision-based methods [13], and environment
sensor-based methods [14]. Compared with the vision-based
methods that exploit a camera or video to capture a series
of images and the environment sensor-based methods that
place sensing units on household objects to capture the inter-
action between an individual and the surrounding objects,
the wearable sensor-based methods recognize human activities
by recording the sensor signals when one performs activities
and training an activity recognizer. Particularly, the miniature
of sensing units and the increased processing power of mobile
devices enables us to wear one or more sensing units [15].
Those devices can be worn on different parts of the human
body (e.g., the finger, waist, wrist, leg, and arm) and one can
simultaneously wear multiple homogeneous or heterogeneous
sensors [16]. In addition, such methods are suitable for both
the outdoor and indoor scenarios and can support applications
closely related to healthcare and body sensor networks [17].

In terms of training an activity recognizer, researchers have
conducted considerable work and proposed a large number
of models, which range from discriminant models to gen-
erative models, to associate raw sensor signals with their
corresponding activity labels [18]. Researchers have also used
the end-to-end deep learning models (e.g., convolutional neural
networks, long short-term memory networks, and stacked
autoencoder) to capture the underlying non-linear relationships
and to jointly optimize the feature representations and model
training [19], [20]. Undoubtedly, they have improved the
recognition performance. One common feature of most of
the existing activity recognizers is that they adopt a flat
structure to recognize all the predefined activities in a single
step using a multi-class classification model [8], [21]. For
simplicity, we call such a scheme the flat model. Noteworthily,
there are human activities that can trigger similar sensor
readings in a natural setting, which would confuse an activity
recognizer and weaken its discriminant ability. One possible
solution is that we apply a divide and conquer strategy
and design a finer-grained model to find a better decision
boundary between similar activities and to gradually infer
the activity labels [8], [22]. Accordingly, there are points
that need further investigation. First, in terms of simple and
well-studied activities, we can use prior domain knowledge to
group them. For example, we can divide sitting and standing
into stationary activity and group walking and running into
dynamic activity. However, how to categorize activities in a
complex scenario without much reliance on domain knowledge
remains unsolved, since experts probably fail to describe the
complex activities of interest. Second, how to reduce the
confusion among similar activities is an important factor that
affects the performance of an activity recognizer. To this
end, we present a data-driven hierarchical framework, named
HierHAR, that helps distinguish similar activities. Specifi-
cally, the predefined activities are first automatically organized
into clusters without prior knowledge. We then construct a
hierarchical model to predict the specific activity labels in
a multi-stage process. Particularly, the main contributions of
this study lie in the following aspects. (1) It is not trivial and
error-prone to identify similar activities in a relatively complex

and new scenario for domain experts. We present a data-driven
method to obtain the relationships among activities. This
greatly reduces the dependency on prior expert knowledge
and contributes to the automatic construction of a hierarchical
activity recognition framework. (2) We utilize the relationships
to guide the construction of hierarchical activity recognition
models and accordingly develop two specific ones: tree-based
model and graph-based model. The former organizes the
predefined activities into a tree structure and makes predictions
in a top-down fashion along with the tree, while the latter
builds a graph with connections between any two activities
instead of restricting connections of activities to a hierarchy
of disjoint groups. This facilitates the graph-based model
to reduce the compounding errors of the tree-based one.
Notably, both models have a hierarchical structure and belong
to data-driven approaches as they utilize the sensor data to train
an activity recognizer. (3) We implement the proposed models
and conduct extensive comparative experiments. The results
demonstrate the power of HierHAR in quantitatively measur-
ing the relationships among activities and the better general-
ization of the graph-based model across different scenarios.

The remainder of this paper is organized as follows.
In section II, we discuss related work about the exploration
of different sensing units and activity recognition models.
Section III illustrates how to construct the tree-based and
graph-based activity recognition models. Experimental setup is
introduced in section IV. Section V presents the experimental
results and analyses. Finally, we conclude the paper with a
summary and a discussion of future work.

II. RELATED WORK

A. Sensing Units

To adapt to different demand-oriented application scenarios,
researchers have explored different sensing technologies and
proposed a wealth of models for activity recognition [23], [24].
According to the used sensing units, we broadly catego-
rize them into vision-based, environmental sensor-based, and
wearable sensor-based methods [6]. As we discussed in the
introduction section, wearable sensor-based methods have the
advantage of easy configuration, a low cost, a wide range
of applications, robustness to background change, and high
degree of portability [8], [25]. Nowadays, commonly used
wearable sensors include, but not limited to, accelerometer,
gyroscope, electrocardiograph, Radio Frequency Identification
(RFID), Global Positioning System (GPS), and light sen-
sors [26]. Particularly, one can wear or carry multiple devices
on different parts of the human body [27], [28]. Among
these sensors, the accelerometer that can measure acceleration
information is among the most widely used ones. For example,
Bao and Intille implemented an activity recognizer with five
small biaxial accelerometers that were worn on the right
hip and four limb positions and they used it to recognize
twenty daily activities [29]. They did experiments on the
dataset that were collected by 20 volunteers and obtained an
accuracy of 84.0% with a decision tree classifier. Besides the
accelerometer, there are studies that use other sensing units to
recognize activities and locomotion. For example, Kim et al.
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used RFID techniques to build an indoor healthcare monitoring
system, where the elderly wore RFID tags and got detected by
an RFID reader to infer the on-going activities and location [2].
Experimental results show the superiority over its competitors.

Besides the use of single type of sensing units, researchers
explore the combination of different types of sensing units. For
example, Peng et al. used the acceleration, location data, and
vital sign to train an activity recognizer [27]. They conducted
experiments on the dataset that was collected by asking
volunteers to perform predefined activities. Experimental
results demonstrate the superiority of the proposed method
over its competitors and show that the inclusion of location
data helps alleviate the cold-start problem. Garcia-Ceja et al.
combined the sound and accelerometer data to recognize
home task activities [30]. The results show that the
combination of heterogeneous sensors leads to a higher
recognition rate. Furthermore, the miniature of sensing units
and increasing power of processors makes it possible to
integrate multiple sensing units into a device. One typical
example is the smartphone that is typically embedded with,
among others, an accelerometer, a gyroscope, GPS, and light
sensors [31], [32]. Obviously, the use of a smartphone releases
users from taking extra devices and remains a priority for
activity recognition due to its high adherence. For example,
Wang et al. investigated the power of a tri-axial accelerometer
and a tri-axial gyroscope in a smartphone when they were
used simultaneously or separately, which shows that their
fusion contributes to better performance [33].

B. Activity Recognition Model

Generally, activity recognition models can be divided into
two categories: knowledge-driven model [34] and data-driven
model [35]. Specifically, knowledge-driven methods rely on an
abstract model of domain knowledge (e.g., logical modelling,
evidential theory, and ontology modelling) to define the spec-
ification of activity and they are robust to noise and have an
advantage of easy interpretation [36]. For example, Chen et al.
applied the logical knowledge and reasoning to model human
activities and the context and used it to infer the occurrence of
activity [34]. However, to define the reasonable specification of
activity of a new domain is not trivial. In contrast, data-driven
methods utilize the collected sensor data to train an activity
recognizer and to associate the sensor readings with activity
labels [35], [37]. Accordingly, researchers have explored a
wealth of models that include discriminant methods (e.g.,
support vector machine, decision tree, and conditional random
field) [38], generative methods (e.g., naïve Bayes and hidden
Markov model) [39], semi-supervised methods, and ensemble
methods (e.g., boosting, bagging, and stacking) [30], [40].
Furthermore, to jointly optimize the feature representation and
classifier training, researchers have explored the use of end-
to-end deep learning to activity recognition, such as restricted
Boltzmann machine (RBM), deep belief network (DBN),
and convolution neural network (CNN) [19], [41], [42]. For
example, Ronao and Cho proposed a deep CNN-based model
to infer the on-going activities from smartphone data [20].
To capture the temporal dependency, Ordóñez and Roggen

presented a convolutional long short-term memory (LSTM)
network to infer activities [43]. Experimental results show the
superiority over its competitors.

In contrast to the above researches, where most of them
adopt a flat model, a hierarchical model considers the simi-
larity between activities and breaks down a multi-class classi-
fication problem into a multi-stage sub-classification problem
towards a better decision boundary. For example, Wang et al.
proposed a model to first recognize human gestures at each
sensor node and then infer the specific activity with the
readings of other sensors and the output of the first step at
a centralized device [44]. From the view of classification, the
above studies basically determine the activity label of a test
sample in a down-top fashion. On the contrary, researchers
propose to construct a tree-based activity recognition model
that first infer the abstract activity and then the specific
activity, which works in a top-down scheme. Particularly,
such a strategy helps better discriminate similar activities and
no assumption about the temporal relations between actions
and activities is explicitly made. For example, Khan et al.
presented a two-stage activity recognizer to first classify static,
dynamic or transition states and then recognize the specific
activity using the linear discriminant analysis and artificial
neural network [24]. Wang et al. relied on prior knowledge
to group the predefined activities and presented a tree-based
activity recognizer to organize the activities into a tree struc-
ture according to the activity characteristics [8]. Cho and Yoon
presented the two-stage 1D CNN model that first optimized
a CNN to classify abstract activities and then trained two
CNNs to obtain the specific activity [45]. They conducted
experiments to infer six simple activities, where they manually
divided them into two groups. Although the existing tree-based
models obtain improved performance, however, one major
limitation is that most of them rely on prior knowledge
to train a tree-based activity recognizer [8], [45]. Unfortu-
nately, it is quite difficult, if not impossible, to determine
the hierarchy by using the expert knowledge for new and
complex scenarios, where little and even no prior knowledge is
available. Even worse, inappropriate grouping of the activities
could lead to degraded performance. Hence, this is quite
different from our proposed tree-based model, where we
adopt a data-driven approach to determining the relationships
among the predefined activities and automatically organizing
them in a tree structure. This contributes to the building of
an application-dependent model. However, for a tree-based
activity recognizer, if we misclassify a test sample at the first
level, we do not have the chance to correct the prediction in
the following steps. This requires us to explore a way that
has the ability to mitigate the compounding of errors induced
in the tree process. Accordingly, we propose a graph-based
model that considers connections between any two activities
instead of restricting connections of activities to a hierarchy of
disjoint groups. Similar to the tree-based model, we also use
the data-driven approach to obtaining a graph of the activities.
Particularly, the proposed tree-based and graph-based models
are general data-driven hierarchical frameworks that can take
as the building blocks existing classification models to train
an activity recognizer.
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Fig. 1. Comparison of the sensor readings of a tri-axial accelerometer
(x-axis, y-axis, and z- axis) associated with three different activities.
(a) upstairs vs. downstairs. (b) upstairs vs. sitting.

III. THE PROPOSED ACTIVITY

RECOGNITION FRAMEWORK

The complexity of human behavior poses a great challenge
to the design of an activity recognizer for real-world applica-
tions, especially in classifying activities that can trigger similar
sensor readings. Obviously, this would cause the confusion
between activities and further leads to degraded discriminant
capabilities. For example, Fig. 1 presents the sensor signals of
a three-axis accelerometer that are associated with three dif-
ferent activities (upstairs, downstairs, and sitting). The X-axis
denotes different sampling points and the Y-axis represents the
magnitude of the sensor signal. We observe that upstairs and
downstairs have similar sensor readings compared to the case
of upstairs and sitting. Consequently, training a flat classifier to
classify the three activities probably favors the discrimination
of static activity (sitting) and dynamic activity (upstairs and
downstairs) and fails to derive a good decision boundary
between upstairs and downstairs. One feasible solution is
to recognize activities hierarchically, where we organize the
predefined activities into multiple clusters and infer activity
labels within each cluster in a coarse-to-fine fashion.

Particularly, as for the hierarchical model, the key is how
to determine the hierarchical structure of the activities of
interest. For simple and well-studied cases, we rely on prior
knowledge to organize these activities into groups and get the
relationships among activities. For example, it is reasonable to
categorize sitting and lying as stationary activity and walking
and running as dynamic activity. However, it is not easy
to obtain the hierarchical structure in the situations where
we need to handle a large number of activities and expert
knowledge is not available. This motivates us to automate the
organization of activities and construct data-driven hierarchical
models. Herein, after giving the approach to measuring the
similarity between activities, we present the tree-based model
and graph-based model, where the former has a tree structure
and the latter is a graph.

A. Tree-Based Activity Recognition Model

The core idea of the tree-based activity recognition model
is to construct a tree of the predefined activities according to
the similarity among activities and train classifiers for each
non-leaf node. In the prediction phase, it classifies a test
sample in a top-down fashion along with the tree structure and
returns the predicted label at the leaf-node. As we discussed
above, it is not trivial for users to determine the confusion

TABLE I
CONFUSION MATRIX ON UCI-HAR WITH NAÏVE BAYES

between activities and organize the activities into a tree struc-
ture when they handle a new and complex scenario. Hence,
it motivates us to explore a data-driven method to automate
the process. Since similarity is associated with the recognition
errors among different activities, we herein explore the use of a
confusion matrix towards improving an activity recognizer in a
supervised learning setting. A confusion matrix, with columns
representing the instances of the predicted classes and rows
denoting the instances of the actual classes (or vice versa),
indicates the power of a classifier in making correct predictions
and its confusion in distinguishing different classes [46]. The
value CMij of the i -th row and j -th column in a confusion
matrix denotes that the number of instances from the i -th
activity is misclassified as the j -th activity. A larger CMij

indicates greater similarity between the two activities. Accord-
ingly, we use a confusion matrix that is associated with an
activity recognizer to measure how much an activity confuses
with other activities. For example, we conduct cross-validation
on the UCI-HAR training set using naïve Bayes [40], and
obtain the corresponding confusion matrix in Table I, where
rows denote the actual activity labels and columns refer
to the predicted activity labels. From Table I, we observe
that walking, upstairs, and downstairs confuse each other
and sitting, standing, and lying are close to each other.
We also observe that the classifier seldom classifies an instance
from static activity into dynamic activity (or vice versa). For
example, the classifier correctly predicts all samples from
static activity. Particularly, it tends to make wrong predictions
within the same activity group, which indicates the confusion
of within-group activities.

To better understand the relationships of the activities,
we apply a clustering algorithm to the confusion matrix and get
a dendrogram that determines the clusters of activities. First,
each row of the confusion matrix is first normalized to keep
the values on the same scale. We then compute the distance
between different rows and apply a hierarchical agglomerative
clustering algorithm with the Ward’s minimum variance cri-
terion to the distances, which returns a dendrogram. Finally,
we clip the dendrogram to form a two-level tree structure.
For example, Fig. 2(a) presents the tree-based activity rela-
tionships associated with Table I. It reflects the similarity
between different activities. The smaller the distance between
two activities is, the more similar they are. We observe that
lying, sitting, and standing form one cluster and walking,
downstairs, and upstairs are grouped together. Also, lying is
more similar to sitting than standing, and walking is more
similar to downstairs than upstairs. In line with the tree,
we train classifiers for each of the internal nodes. Specifically,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 08,2021 at 01:32:05 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: HierHAR: SENSOR-BASED DATA-DRIVEN HIERARCHICAL HUMAN ACTIVITY RECOGNITION 3357

Fig. 2. Tree-based activity recognizer obtained on the UCI-HAR training
set.

we train a top-level classifier to classify the top-level clusters
of labels and train a second-level classifier within each cluster
of activities to predict the specific activity labels. Obviously,
the output of the top-level classifier determines the choice
of the second-level classifier. Fig. 2(b) gives the tree-based
activity recognizer that corresponds to Fig. 2(a), where the
leaf-nodes denote specific activities and each internal node
represents a classifier. Particularly, we create a meta-class for
each internal node. The number of classes of a meta-class
equals the number of its children. For example, in Fig. 2(b),
we name the second-level internal nodes as “static activity”
and “dynamic activity”, which are not the predefined activities.
The root node is a binary classification problem, and the “static
activity” node is a three-classification problem.

As for the prediction, we gradually infer the specific activity
label of a test sample along with the tree in a top-down
scheme. Specifically, we first use the top-level classifier to
predict the label of top-level clusters and then use the output
to direct the selection of a second-level classifier. Afterwards,
we use the selected second-level classifier to get activity
labels. Algorithm 1 presents the pseudo-code of how to
train a tree-based activity recognition model and use it to
infer the label of a test sample. Moreover, for a dataset D
with C labels, we use the notations given in Table II for
better illustrations. Besides, we also present the flowchart of
Algorithm 1, as shown in Fig. 3. The arrow with solid line
represents the training phase and the arrow with dash line
denotes the test phase. Particularly, in training a classifier cls,
the component (a) is associated with the tree-based model.

B. Graph-Based Activity Recognition Model

Although tree-based activity recognition models enable us to
automate the organization of activities, however, one drawback
is that the misclassification of the top-level classifier jeopar-
dizes the performance of the second-level classifiers. That is,

Algorithm 1 Tree-Based Activity Recognition Model
Input: a labeled train set D, activity labels L, a test sample x
Output: the activity label of x
// the construction of a tree-based activity recognition model
1. obtain the confusion matrix CM on D;
2. construct a two-level tree T of L on CM;
3. cls_fs = {}; // a set used for storing classifiers
4. for each non-leaf node nd of T do

4.1) search the child nodes ↓(nd) of nd within T ;
4.2) obtain the training set D(nd) using ↓(nd);
4.3) train a classifier clsnd using D(nd);
4.4) cls_fs.add(clsnd); // add it to cls_fs

// activity recognition using the tree-based model
5. set the root node of T as current node nd; //initialization
6. obtain the number of children of nd, and note it as | ↓(nd)|;
7. use clsnd on x to get the next-level label A and corre-
sponding next-level node cnd; (1 ≤ cnd ≤ | ↓(nd)| and A
corresponds to the maximal probability output of clsnd)
8. if is_leaf _node(cnd) do // cnd is a leaf node?

return PL as the predicted activity label; // the activity label
of interest
9. else

set node pnd as current node nd, and go to step 6;

Fig. 3. Flowchart of the proposed activity recognition framework.

TABLE II
NOTATION AND CORRESPONDING MEANING

if a test sample is classified into the wrong clusters by the top-
level classifier, the second-level classifier makes wrong deci-
sions as well. For example, as shown in Table I, 1.7% standing
instances are classified as upstairs. If an instance of standing
is classified as dynamic activity by the top-level classifier, the
second-level classifier can only classify it as walking, upstairs,
or downstairs. To mitigate it, we present a graph-based model
that can connect an activity with any other activities rather
than the cluster of a subset of activities in the same tree
branch. Specifically, according to the given confusion matrix,
for each activity A, we find the set of activities S(A) that are
more easily misclassified as activity A. We herein define a
confusion threshold to obtain the confusing activities of A.
For example, according to Table I, if we use a confusion
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Fig. 4. Graph-based activity recognizer on UCI-HAR obtained by naïve
Bayes.

threshold of 3%, the confusing activities of downstairs include
walking and upstairs. If we use 1%, the confusing activities of
go upstairs include walking, standing, go downstairs, sitting,
and lying. This enables us to make correct predictions despite
of the misclassification of the top-level classifier. The above
example indicates that if the inferred activity label is A,
its true label possibly comes from S(A), and we need an
activity recognizer to distinguish between S(A) and A. Fig. 4
presents the corresponding graph-based model of Table I that
uses a 3% confusion threshold, where we determine and
give the confusing classes of the second-level nodes. That
is, a second-level node has confusing activities if it has its
child node. For example, the confusing activities of standing
include lying, the confusing activities of lying include standing
and sitting, and downstairs does not have confusing activities.

Different from the tree-based model, the graph-based model
first trains a top-level classifier to distinguish all the predefined
activities. Afterwards, for each activity A that has non-empty
S(A), we train a second-level classifier to distinguish between
A and S(A). In classifying an unseen sample, we first classify
it using the top-level classifier. If the set S(A) of the top-level
prediction A is not empty, we use the second-level classifier
associated with A and S(A) to get the final prediction;
otherwise, we report the top-level result. For Fig. 4, we use
the top-level classifier to classify the six activities and use the
corresponding second-level classifier to get specific activity
labels. Compared with the tree-based model, the graph-based
model does not involve meta-classes. Algorithm 2 presents the
pseudo-code of how to train a graph-based activity recognition
model and use it to make predictions, where lines 1-4 gives the
training process and lines 5-7 shows how to infer the activity
label of a test sample. Besides, we present the flowchart of
Algorithm 2, as shown in Fig. 3, where the component (b) is
associated with the graph-based model in training a classifier
cls. The main difference between Algorithms 1 and 2 is the
way of getting cls.

IV. EXPERIMENTAL SETTING AND RESULTS

A. Experimental Datasets

To evaluate HierHAR, we conduct comparative experiments
on two public activity recognition datasets. The first dataset
UCI-HAR consists of six human activities (walking, standing
going downstairs, going upstairs, sitting, and lying)
performed by thirty volunteers with a smartphone attached

Algorithm 2 Graph-Based Activity Recognition Model
Input: a labeled train set D, activity labels L,

a confusion threshold θ , a test sample x
Output: the activity label A of x
// the training of graph-based activity recognition model
1. calculate the confusion matrix CM on D; // return confusion
matrix
2. for each activity A of L do

2.1) S(A) = {}; // initialize the set of confusing activities
of A
3. for each activity A of L do

3.1) for each activity B of L do
if A! = B and CM(A, B) >= θ do

S(A).add(B); // B is the confusing activity of A and
add it to S(A)

3.2) if not_empty(S(A)) do
train a classifier cls_A to distinguish between A and

S(A);
4. train a classifier cls_all on D to distinguish all activities;
// activity recognition using the graph-based model
5. A = cls_all(x); // return the activity label of x using the
first-level classifier
6. if not_empty(S(A)) do

A = cls_A(x); // return the label of x using the second-level
classifier
7. return A

to their waist [31]. The used smartphone was embedded with
a 3-axis accelerometer and a 3-axis gyroscope and worked
at a 50 Hz sample rate. The streaming sensor readings
were divided into segments with a 2.56s half-overlap sliding
window. That is, each segment has 128 sensor readings. For
each segment, 561 features (272 time-domain features and
289 frequency-domain features) were extracted. The second
dataset Skoda Mini Checkpoint (SkodaMiCP) contains the data
of ten manipulative gestures performed by the assembly-line
worker in a car maintenance environment [28]. The ten
gestures of interest include write on notepad (WN), open
hood (OH), close hood (CH), check gaps on the front (CG),
open left front door (OL), close left front door (CL), close
both left door (CB), check trunk gaps (CT ), open and close
trunk (OCT ), and checking steering wheel (CSW ). The dataset
was recorded for about three hours with USB sensors placed
on the right and left lower and upper arm. Each USB sensor
is a 3-axis accelerometer working at a 64 Hz sample rate. The
sensor data were divided into 1s segments with 50% overlap
between two adjacent windows. Various time-domain and
frequency-domain features are extracted from the segments,
such as mean, variance, median, maximum, minimum, mean
cross rate, skewness, mean absolute deviation, 25th percentile,
75th percentile, and Hjorth parameters. The aim is to automate
the recognition of activities from the wearable sensor.

For the two datasets, we can group the activities of
UCI-HAR into stationary activity and dynamic activity based
on the prior knowledge of human movement states. In con-
trast, SkodaMiCP involves a larger number of activities,
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which poses a challenge to the identification of similar
activities for knowledge-driven methods and also makes the
recognition of activities much more challenging.

B. Constructing an Activity Recognizer

As we discussed above, the tree-based model and graph-
based model are general frameworks that can take as the build-
ing blocks various classification models. Herein, we explore
two different ways to design the hierarchical model and to
explore the combination of different classification models.
First, we use the same classification model at the top level
and the second level. For illustration purpose, we call such a
scheme the homogeneous mode, including the homogeneous
tree-based model (HoT) and homogeneous graph-based model
(HoG). Moreover, we can use different classification models
in the two levels and we name it the heterogeneous mode,
including the heterogeneous tree-based model (HeT) and
heterogeneous graph-based model (HeG). Besides, we name
the non-hierarchical model a flat model. For a flat model,
it only uses one single type of classification model. As for the
choice of a classifier, we explore four classification models
that have different metrics, i.e., naïve Bayes (NB), k nearest
neighbor with k = 1 (KNN), decision tree (DT), and sup-
port vector machine (SVM). These classifiers are commonly
used in previous studies for activity recognition [31], [33],
[38], [40]. One-versus-one strategy is used in multi-class SVM
to infer the activity label of a test sample. For the performance
evaluation metrics, we use accuracy (Acc), precision (Prec),
recall (Rec), F1, and G-mean (Gm) to evaluate the activity
recognizers [43]. Since F1 is a combination of precision
and recall, we here present precision and F1 to show the
recognition performance.

Precision denotes the weighted average of the correctly
predicted instances for each activity label.

Precision = 1

C

C∑
i=1

Tii

N Pi
, (1)

where C is the number of classes, Tii indicates the number
of samples from label i that are correctly classified, and NPi

means the number of samples that are predicted with label i .
Recall indicates the fraction of correctly retrieved samples

for each activity class.

Recall = 1

C

C∑
i=1

Tii

NTi
, (2)

where NTi means the number of instances with true label i .
To account for the class imbalance problem, F1 is the

harmonic mean of precision and recall.

F1 = 2∗precision∗recall

precision + recall
(3)

Similarity, G-mean also considers the case of class imbal-
ance and equals the root of the product of recall recalli for
each class i .

G − mean =
√√√√ C∏

i=1

recalli (4)

Fig. 5. Tree-based activity recognizer on SkodaMiCP obtained with NB.

Fig. 6. Graph-based activity recognizer on SkodaMiCP obtained
with NB.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Tree-Based and Graph-Based Activity Recognizers

According to the steps of Algorithms 1 and 2, we construct
the tree-based as well as graph-based activity recognizers for
each of the experimental datasets. For UCI-HAR, Figs. 2 and 4
present the activity recognizers for UCI-HAR using NB, where
the confusion threshold is 0.03 for the graph-bases model.
Similarly, we can obtain the tree-based and graph-based mod-
els that are associated with KNN, DT, and SVM, respectively.
Due to space limitations, we omit the models here. For
SkodaMiCP, we give the tree-based and graph-based activity
recognizers when NB is used. Fig. 5 presents the tree-based
activity recognizer and Fig. 6 gives the graph-based one with
a confusion threshold of 3%. Similar to Fig. 2, the task of the
root node in Fig. 5 is to classify meta activity A and meta
activity B, and the task of meta activity A (meta activity B) is
to distinguish OH, CH, CG, and CT (WN, OL, CL, CB, OCT,
and CSW ). For Fig. 6, the child node of a second-level node,
if exists, denotes the confusing activities of the second-level
node. For example, the confusing activities of the second-level
node WN include CSW, and the confusing activities of OL
include CL and OCT. From Fig. 6, we see that there are con-
nections between activities (e.g., the connection between CH
and OCT ) that are in disjoint groups in the tree-based model.
This indicates the power of graph-based model in capturing the
confusion from different groups. Similarly, we can optimize
activity recognizers for KNN, DT, as well as SVM.

B. Recognition Performance

We herein evaluate both homogeneous and heterogeneous
models on test sets with the tree-based and graph-based
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TABLE III
RECOGNITION PERFORMANCE ON UCI-HAR OF FLAT, TREE-, AND GRAPH-BASED MODELS

TABLE IV
RECOGNITION PERFORMANCE ON SKODAMICP OF FLAT, TREE-, AND GRAPH-BASED MODELS

Fig. 7. Accuracy of different activity recognition models on the two datasets. (a) UCI-HAR; (b) SkodaMiCP.

models. Specifically, for the homogeneous models, we use
NB, KNN, DT, and SVM. For the heterogeneous models,
we choose SVM at the second level and other classifier (i.e.,
NB, KNN, DT, or SVM) at the top level. Notably, we evaluate
the combination of different classification models and present
the results in the following section. Tables III-IV show the
results on UCI-HAR and SkodaMiCP, where AR denotes
an activity recognizer. To facilitate the comparison, Fig. 7
shows the accuracy of different methods on UCI-HAR and
SkodaMiCP. First, according to the results, we observe that
the tree-based model has mixed results. Specifically, HeT
outperforms HoT on UCI-HAR, while HoT performs better
than HeT on SkodaMiCP. For the graph-based model, HeG
consistently performs better than HoG. Second, in terms of
the tree-based model and flat model, the flat model achieves
a higher recognition rate in some cases. Particularly, the flat
model outperforms both HoT and HeT on SkodaMiCP. The
main reason is that the tree-based model probably induces
compounding errors in its two-stage prediction process. Third,
when we compare the flat model and graph-based model,

we see that the graph-based model performs better in the
majority of cases. This is mainly because the graph-based
model can benefit from the finer-step to distinguish confusing
activities. Fourth, compared with the tree-based model, the
graph-based model obtains consistently better generalization
ability. Specifically, both achieve comparable performance
on UCI-HAR, while the graph-based model outperforms the
tree-based model on SkodaMiCP. The main reason is that,
in the case of UCI-HAR, the graph-based model only has
connections between activities of the same clusters as the tree-
based model and fails to capture the confusion of different
types of activities. For SkodaMiCP, however, it has a larger
number of activities and the graph-based model better captures
the relations of different activities that are in disjoint groups
in the tree-based model.

In addition, to investigate the performance improvement,
we investigate the confusion matrix. Figs. 8 and 9 present
the confusion matrices of the two datasets with NB used
in the top-level. The rows refer to the actual labels and the
columns denote the predicted labels. From Fig. 8, we can
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Fig. 8. Confusion matrix on UCI-HAR with NB used at the top-level. (a) Flat; (b) HoT; (c) HeT; (d) HoG; (e) HeG.

Fig. 9. Confusion matrix on SkodaMiCP with NB used at the top-level. (a) Flat; (b) HoT; (c) HeT; (d) HoG; (e) HeG.

observe that the heterogeneous model performs better than
the homogeneous model. In terms of the flat model, HeT and
HeG, we observe HeT and HeG better classify the similar
activities. For example, the flat model misclassifies 212 lying
samples as standing, while HeT and HeG correctly classify
530 and 534 lying test samples. From Fig. 9, we observe
that the graph-based model has an advantage of correcting

the confusion errors that happen in the tree-based model,
which demonstrates the superiority of the graph-based model
in complex scenarios.

C. Evaluation of Hyperparameter

The confusion threshold θ is an important parameter of
the graph-based model, which determines the construction
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Fig. 10. Recognition accuracy and F1 vs. different confusion thresholds on UCI-HAR using different top-level classifiers. (a) NB; (b) KNN; (c) DT;
(d) SVM.

Fig. 11. Recognition accuracy and F1 vs. different confusion thresholds on SkodaMiCP using different top-level classifiers. (a) NB; (b) KNN; (c) DT;
(d) SVM.

TABLE V
PERFORMANCE ON UCI-HAR WITH THE COMBINATION OF DIFFERENT CLASSIFIERS

of the second-level classifiers. Herein, we evaluate its
association with the recognition performance. According to
our preliminary work, the candidate values of θ used in this
study include 0.01, 0.02, 0.03, 0.05, and 0.1. Accordingly,
Figs. 10-11 present the accuracy and F1 on UCI-HAR and
SkodaMiCP, respectively. The X-axis denotes the optional
values of θ and the Y-axis gives the corresponding accuracy.
For each dataset, we use SVM at the second level, and four
different classification models (i.e., NB, KNN, SVM, and DT)
are used to train the top-level classifier. Therefore, we plot
four figures for each dataset and compare the results of HoG
and HeG. From Figs. 10 and 11, we observe that the value
of θ indeed influences the performance of the homogeneous
model and heterogeneous model. There is a general trend
that the accuracy first increases and then decreases with the
increase of the value of θ . Also, 3% is a reasonable choice
and the graph-based model works well in the majority of
cases. The possible reason is that the value of θ is associated
with the graph structure. If θ is set a large value, there will
be sparse connections (even no connection) between the
activities at the second level. This reduces the graph-based

model to the flat model. In contrast, a small value of θ will
return a densely connected graph. We also observe that the
heterogeneous model performs better than the homogeneous
model, which is consistent with previous results.

D. Evaluation of the Combination of Classifiers

We explore the combinations of different classifiers in
the tree-based and graph-based models. Specifically, we can
use NB, KNN, DT, or SVM at the top level and use NB,
KNN, DT or SVM at the second level. Tables V-VI present
the results on UCI-HAR and SkodaMiCP, respectively.
Experimental results are grouped by the top-level classifier
and the best results for each group are shown in bold. For
UCI-HAR, we observe that the use of SVM at the second
level generally outperforms its competitors. For SkodaMiCP,
the homogeneous model is inferior to that of the heterogeneous
model that uses SVM at the second level. This is consistent
with the experimental results in the previous subsection. Also,
we observe the use of decision tree at the second level tends
to obtain better performance.
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TABLE VI
PERFORMANCE ON SKODAMICP WITH THE COMBINATION OF DIFFERENT CLASSIFIERS

VI. CONCLUSION

From the perspective of data analysis, activity recognition
chain (ARC) mainly consists of sensor data acquisition, data
preprocessing, feature extraction, and model training and
classification, where a classification model is generally first
trained on the collected sensor data and then used for making
predictions. Accordingly, the training of a discriminant activity
recognition model functions as middleware in bridging the
gap between the raw sensor data and high-level applications
for activity recognition supported Internet of Things (IoT)
services. Particularly, the recognition accuracy of an activity
recognizer would largely determine the acceptability of an
IoT application. Therefore, studies in the model construction
guide users in choosing activity recognition models and the
improved activity recognizer contributes to the development of
an IoT application. Although the development of wearable sen-
sors greatly facilitates the automatic recognition of activities,
the complexity of human behavior that is characteristically
associated with uncertainty and concurrency poses a serious
challenge to the design of an activity recognizer. Particularly,
even different activities can trigger similar sensor data, which
inevitably degrades the discriminant ability of a classifier.
To this end, we present a data-driven hierarchical framework
HierHAR for sensor-based activity recognition. Specifically,
we propose to automate the organization of similar activities
and adopt a hierarchical structure to gradually infer the specific
activity label towards a better decision boundary of activities.
We then present two hierarchical activity recognition models:
tree-based model and graph-based model, where the former
organizes the activities into a tree structure and the latter
essentially builds a graph to connect activities. Particularly,
both are data-driven approaches that use sensor data to train an
activity recognizer and the graph-based model helps reduce the
compounding error. Finally, we conduct extensive experiments
to evaluate HierHAR. The results demonstrate its effectiveness
in automating the organization of activities and in training two
activity recognition models and also indicate the superiority of
graph-based activity recognizer.

One limitation of the study is the offline data analysis, which
may be different from the real-time situations under time and
resource constraints. On the one hand, since the procedure of
both online and offline schemes involves the construction and
optimization of an activity recognizer, our study provides an
objective metric for the choice of an activity recognizer. On the
other hand, this motivates us to conduct further researches on
evaluating the performance of HierHAR and co-optimizing

the hardware, software, and algorithms in real-time cases.
Besides, we plan to work along with the following directions
in the future. First, in addition to the applications such as
behavior analysis, wellness evaluation and chronic disease
management, there are critical tasks, especially in IoT services,
that have little tolerance to time-delay in data collection and
analysis, hence, a real-time activity recognizer is expected.
Considering that the rapid development of edge computing
greatly facilitates the implementation of the proposed method
into the intelligent edge to better support (near) real-time IoT
applications, we plan to explore and evaluate its combination
with the edge computing. Particularly, this also involves further
studies in the choice of sensing units and edge devices,
the selection of informative features, and the optimization of
a classification model. Second, we adopt an empirical value
of the confusion threshold in the graph-based model, which
requires users to set an appropriate value. Hence, how to
adaptively estimate its optimal value by utilizing information
latent in the dataset requires further study. Third, recent
years have witnessed the great success of deep learning in
many fields such as computer vision and activity recognition.
Considering that the proposed models are general frameworks,
we can incorporate deep learning into HierHAR. This remains
another topic on conducting a systematic study.
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