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Abstract—The global trend of population aging and the 
continuing maturity of the Internet of Things (IoT) technology 
drives the rapid development of health care. In the 
comprehensive applications of IoT technology, developing and 
constructing a prediction model for chronic diseases is a great 
improvement to healthcare technology as well as an 
exploration of IoT technology on the data-analysis and 
decision-making level. Considering that early detection, 
diagnosis and screening of hypertension plays a significant role 
in the prevention and reduction of the onset of cardiovascular 
diseases as well as the improvement of quality of life, it is of 
great value to figure out hypertension-related risk factors and 
further establish a model for the prediction of hypertension 
with the identified risk factors. Thus, in this paper, we put 
forward to integrate logistic regression analysis and Artificial 
Neural Networks (ANNs) model for the selection of risk factors 
and the prediction of chronic diseases by taking a case study of 
hypertension. First, binary logistic regression model was 
applied on experimental dataset collected from Behavior Risk 
Factor Surveillance System (BRFSS) to select factors 
statistically significant to hypertension in terms of the pre-
defined p-value. Then, a Multi-Layer Perception (MLP) neural 
network model with Back Propagation (BP) algorithm was 
constructed and trained for the prediction of hypertension with 
the selected risk factors as inputs to ANNs. Experimental 
results showed that our proposed approach achieved more 
than 72% prediction accuracy acceptable in the diagnosis of 
hypertension and that the Area Under the receiver-operator 
Curve (AUC) was more than 0.77. The results indicate that 
integration of logistic regression and artificial neural networks 
provides us an effective method in the selection of risk factors 
and the prediction of hypertension, as well as a general 
approach for the prediction of other chronic diseases. 
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I.  INTRODUCTION 
With the continuing maturity and rapid development of 

Internet of Things (IoT) technology, along with its powerful 
capacity in sensing information, collecting and 
communicating data with one another, collaboratively 
analyzing the context and intelligent monitoring and 
decision-making, IoT technology has been gradually applied 
to a variety of spectrums ranging from logistics tracking, 
transportation to medial and health care fields [1]. 

Concurrent with the development of IoT technology is the 
global population aging that strains governments’ ability to 
provide better health care. In addition to increasing costs of 
health care, chronic disease also directly affects the quality 
of life of individuals and their family members as well, 
which drives further researches of the applications of IoT 
technology in health care. Among these, developing and 
constructing an effective prediction model for chronic 
diseases is of great value in healthcare and also a specific 
application case of IoT technology on the data-analysis and 
decision-making level.  

Chronic disease such as hypertension, diabetes, heart 
diseases and cancer, is a long-lasting health conditions that 
can be controlled yet not cured. Data from World Health 
Organization show that chronic disease is also the major 
cause of premature death around the world. Although 
chronic diseases are among the most common and costly 
health problems, they are also among the most preventable 
and most can be effectively controlled through reasonable 
measures. Since many chronic diseases are linked to lifestyle 
choices that within our own hands to change, therefore, 
identifying risk factors associated with a certain disease and 
further constructing a prediction model would be of great 
importance in the early prevention and effective management 
of chronic diseases. 

Hypertension is a chronic medical condition that affects a 
wide range of population, particularly the older adults after 
the age of 55, and even becomes prevalent among 
adolescents in both developing and developed countries [2]. 
Besides the fact that prevention and management of 
hypertension consumes a wealth of medical resources and 
health care services, resulting in unbalanced medical service 
distributions and definitely putting on the society 
considerable financial burdens, hypertension is also a major 
risk factor for the occurrence and development of 
cardiovascular diseases such as stroke, heart failure, chronic 
kidney disease, etc., which are the leading causes of the high 
morbidity and mortality rates [3,4,5,6]. Consequently, early 
detection, diagnosis and screening of hypertension is an 
necessity in the prevention and reduction of the onset of 
cardiovascular diseases as well as leading to improved 
quality of life of individuals suffering from hypertension and 
their families, and potentially saving enormous lives; on the 
other hand, investigation of the hypertension risk factors are 
particularly drawing interests from public health and health 
care researchers with the aim to bring down the onset of 
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hypertension of individuals and improve their health 
conditions through early warning and prevention.  

A number of researchers and medical staff have 
conducted considerable work in the investigation of 
hypertension risk factors and in the construction of effective 
and efficient models for the prediction of hypertension with 
potential risk factors. There are a variety of factors that are 
relevant to hypertension prediction mainly including 
demographics, anthropometry body surface scanning data, 
clinical test results and even molecular-level data such as 
genetics, proteins; and a large number of theories and 
methods, including machine learning and statistical analysis 
techniques, are employed as powerful tools to facilitate the 
prediction and diagnosis of hypertension. For example, Ture, 
et al. conducted a comparative experiment to compare the 
hypertension prediction accuracy of nine commonly used 
classifiers on experimental dataset and their experimental 
dataset consists of demographics, behavior information and 
clinical laboratory data. On the basis of experimental results, 
they concluded that Multi-Layer Perceptron (MLP) neural 
networks and Radial Basis Function (RBF) neural networks 
performed better than the other three decision trees and four 
statistical algorithms [2]. The approach proposed by 
Blinowska, et al. achieved satisfactory prediction accuracy 
through the application of Bayesian statistical method in the 
prediction of hypertension by incorporating both prior 
knowledge and possible costs of wrong decisions, while one 
of the deficiencies of their study is the difficulty in the 
collection of sufficient numbers of experimental cases and in 
ensuring the integrality of each case since Bayesian method 
is built on statistical theory [7,8]. Besides the use of clinical 
laboratory data, researchers also turn to other types of 
available data to improve the prediction accuracy of 
hypertension. For example, Hsu, et al focused their attentions 
on the exploration of the relation between hypertension and 
three-dimensional anthropometric scanning data such as the 
circumferences of waist, wrist, gluteal, etc. and associated 
individual medical profiles, and their experimental results 
demonstrated the effectiveness of anthropometric data in the 
prediction of hypertension [4]. To investigate the mechanism 
of hypertension in molecule level, Caulfield, et al conducted 
a research to identify the genetic factors associated with 
essential hypertension. Their work presents us novel insights 
in the pathogenesis mechanisms and prediction of 
hypertension and the design and discovery of potential 
therapeutic targets [9]. These researches achieve satisfactory 
performance in the prediction of hypertension; however, 
there exist some difficulties and limitations in actual use, 
especially in hypertension surveillance for a large 
population. First, the utilization of clinical data, 
anthropometric body surface scanning data and/or genomic 
data achieves higher prediction accuracy, but it is not 
suitable and practical for hypertension prediction in a large 
population since it involves complex operation processes and 
costs much, which hinders the collection of sufficient 
hypertension cases. Second, since being lack of clear clinical 
effects in the early stage of hypertension and not taking it 
seriously, individuals easily disregard the occurrence of 
hypertension, which leads to serious complications 

potentially [10]. Third, clinical data and/or genomic data are 
good indicators for the prediction of hypertension, but they 
present less information about hypertension risk factors, 
which is of great value in the early prevention and self-
management of hypertension. To enable early-stage 
prevention and management of hypertension in an efficient 
and economic but effective way and facilitate hypertension 
surveillance in a large population, developing and 
constructing an effective hypertension prediction model with 
easily observed and collected factors are in urgent need.  

Since lifestyle behaviors such as drinking, smoking 
habits and physical activity level contribute to the occurrence 
and development of hypertension, many researchers have 
conducted studies in the construction of hypertension 
diagnosis and prediction model by integrating behavior risk 
factors and demographics such as age, sex, height and weight 
with clinical laboratory data [2,4,11,12,13,14]. Compared 
with clinical laboratory data, anthropometric body surface 
scanning data and genomic data, behavior information are 
easily collected and meaningful in the prevention and 
management of hypertension and more suitable for use in a 
large population. Lifestyle risk factors could be indicators for 
hypertension to remind individuals to avoid or circumvent 
unhealthy behaviors and prediction model could be used in 
large-scale hypertension surveillance without measuring 
their blood pressures using instruments. Therefore, selecting 
significant risk factors and further establishing a prediction 
model with these factors definitely facilitate the prevention 
and management of hypertension.  

In this paper, we proposed a logistic regression and 
artificial neural network-based approach for chronic disease 
prediction by taking hypertension as a study case. Through 
collecting and cleansing the experimental data publicly 
available from Behavior Risk Factor Surveillance System 
(BRFSS) of Centers of Control and Prevention (CDC), we 
first utilized the binary logistic regression analysis to select 
risk factors with significant p-value. Then, we constructed 
and trained a Multi-Layer Perceptron (MLP) neural network 
with Back Propagation (BP) algorithm with the selected 
factors as inputs to predict whether an individual suffering 
from hypertension or not. In the construction and training of 
artificial neural networks, three rule-of-thumbs were 
employed to narrow down the search space of the parameter 
values in neural networks towards a balanced tradeoff 
between speed and accuracy.  

Contributions of our research mainly include: 
     1) integrating logistic regression analysis and Artificial 
Neural Networks model in the selection of risk factors and 
the prediction of chronic diseases. Although we just 
considered hypertension as a study case, it could be used for 
the prediction of other chronic diseases with corresponding 
risk factors supplied. 
     2) presenting detailed discussion of the selection of 
Artificial Neural Networks architecture and the setting of 
relevant parameters, which directs researchers in the choice 
and usage of neural networks towards a balanced tradeoff 
between speed and accuracy. 
     3) experimental results showed that the proposed 
approach achieved satisfactory performance, which 
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demonstrates the feasibility of the approach in the prediction 
of not only hypertension, but also other chronic diseases.  

This paper is organized as follows: research 
backgrounds, related work and main contribution statements 
were presented in introduction section; collection and 
preparation of hypertension experimental dataset, logistic 
regression analysis and artificial neural networks model 
related knowledge were illustrated in materials and methods 
section; in experimental design and result analysis section, 
we detailed the construction and the selection of parameters 
of artificial neural networks, and presented the experimental 
results of the risk factors with significant p-value and the 
prediction performance achieved by artificial neural network 
model. The last section concluded the paper with a brief 
summary. 

II. MATERIALS AND METHODS 

A. Dataset and Hypertension Risk Factors 
Experimental dataset about hypertension was collected 

from the Behavior Risk Factor Surveillance System (BRFSS) 
of Centers of Disease Control and Prevention (CDC), data of 
which are publicly available and downloadable from its 
website [15]. BRFSS, which has a long history in behavioral 
and chronic disease surveillance, is the world’s largest and 
on-going telephone health survey system. BRFSS is mainly 
for tracking and measuring individual health conditions and 
risk behaviors that contribute to the leading causes of high 
morbidity and mortality rates in adult population, aged 18 
years and older in the United States yearly since 1984. Its 
survey covers a wide range of health risk factors, preventive 
health practices and health conditions, including 
hypertension, diabetes and cancers, and other common 
chronic diseases. By collecting and recording a variety of 
health-related information, BRFSS facilitates us to conduct 
researches to investigate the relations between some specific 
chronic diseases and behavior information and demographics 
of an individual.  

BRFSS questionnaire consisting of core component, 
optional modules and state-added questions, is designed by a 
working group of BRFSS state coordinators and CDC staff. 
Each item in BRFSS survey system records the reply to each 
question from an individual. For example, for hypertension: 
corresponding survey is “Have you been told by a doctor, 
nurse, or other health professionals that you have high blood 
pressure?” and its reply is either “YES” or “NO”, in which 
the former means that the individual suffers from 
hypertension, while the later representing one is not with 
hypertension; in the same manner, other questions like 
“About how much do you weight without shoes?” and 
“About how tall are you without shoes?” The value of other 
survey items could be obtained in the similar way. BRFSS 
website provides relevant questionnaire, coding form and 
detailed illustrations [15]. 

Through combining the survey items in BRFSS with the 
potential hypertension risk factors used by previous 
researchers as discussed in introduction section, we chose 13 
survey items as candidate factors and illustrations to each 
item was presented in Table I. After excluding cases with 

missing values and transforming the coding of survey item in 
BRFSS, finally, we got the experimental dataset from the 
year of 1996 to 2005, which consists of 308,711 cases with 
one target variable, i.e. hypertension or not, and 13 
independent variables relevant to hypertension. 

TABLE I.   DESCRIPTION OF VARIABLES OF EXPERIMENTAL DATA 

      

B. Logistic Regression Model 
Logistic regression model, a type of statistical regression 

analysis technology, has the capacity to measure the 
relationship between a categorical dependent variable and 
one or more independent variables, and is extensively used in 
numerous disciplines such as medical, bioinformatics and 
social science fields [30]. According to the number of values 
of the dependent variable, logistic regression model is 
categorized into binomial and multinomial regression 
analysis. In binary logistic regression analysis, dependent 
variable is usually coded as “0” or “1” to denote an 
individual suffering from or getting away from a certain 
disease. In the case of hypertension, the logistic regression 
model computes the probability of the target disease y (y=1 if 
the subject suffering from hypertension, otherwise, y=0) as a 
function of the risk factors. By computing the conditional 
probability p(y=1 | X), where X = (x1, x2…xn) represents n 
risk factors associated with the disease, we could calculate 
the likelihood that an individual suffers from the disease. The 
logistic regression model takes the following form: 

      ����
��� �

	 − ��� �

 = β

�
+ β

	
� �

	
+ β


� �


+ ���+ β

�
� �

�
����������	�            

No. Variable Variable description 

1 AGE ‘age’ 

2 SEX ‘sex’ 

3 HEIGHT ‘height in inches’ 

4 WEIGHT ‘weight in pounds’ 

5 MARITAL ‘marriage status’ 

6 EDUC ‘education level’ 

7 INCOME ‘income level’ 

8 EXERANY ‘exercises during past month’ 

9 DIABETES ‘ever told having diabetes’ 

10 TOLDHI ‘ever told blood cholesterol high’ 

11 SMOKE100 ‘smoke more than 100 in total’ 

12 SMOKEDAY ‘smoke frequency now’ 

13 ALCDAY ‘drink frequency’ 

14 BPHIGH ‘ever told blood pressure high’ 
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, where X = (x1, x2…xn) stands for the vectors of n risk 
factors selected by logistic regression model, β

�
is the 

coefficients of corresponding xi and represents the statistical 
significance level. By transforming (1), we rewrite the 
prediction model expressed as (2): 

             
��� � � � = � � �� + ��	�−�β

�
+ β

�
� �

�
+ β

�
� �

�
+ ���+ β

�
� �

�
�������������� 

By setting 0.5 as the cutoff value, if p(y=1 | X) > 0.5, we 
infer that the individual suffers from the disease; otherwise, 
he/she is free from the disease. Besides this, logistic 
regression model is endowed with the capacity to select 
factors that are significant to the disease y on the basis of its 
statistical significance p-value.  

In our work, logistic regression analysis was applied to 
select risk factors that were significant to hypertension. 
Further, the selected risk factors were directed to neural 
networks model as inputs.  

C. Multilayer Neural Network 
Artificial Neural Networks (ANNs) are computational 

model inspired by animals’ central nervous system. ANNs 
are data-driven self-adaptive methods since they could adjust 
themselves to the data without positing any explicit 
specification of distribution form for the underlying model, 
which differs from traditional statistical procedures that are 
established on Bayesian decision theory. Moreover, as a 
nonlinear mapping model, ANNs are flexible and effective in 
modeling and reflecting the complex relationships between 
inputs and outputs in the real word, and the effectiveness and 
flexibility of neural networks for classification and 
prediction problems has been tested empirically in a wide 
variety of classification tasks such as handwriting 
recognition [16], speech recognition, medical diagnosis 
[17,18]. The typical processing procedure of an artificial 
neural network is: a set of input neurons are activated by 
inputs, then the activations of these neurons are passed on, 
weighted and transformed by functions given by the network 
to other neurons, until finally the output neurons are 
activated and generate results. 

Multi-Layer Perceptron (MLP) neural networks are one 
of the classical and commonly used static neural networks 
and widely used for classification problems [19]. MLP are 
feed-forward neural networks trained with the Back 
Propagation (BP) algorithm, and utilizes supervised learning 
techniques to transform sets of input data into a desired 
response. As a modification of the standard linear 
perceptron, MLP can distinguish data that are not linearly 
separable. More recently, there has been renewed interest in 
back propagation networks due to the success of deep 
learning. In our research, we plan to employ MLP to explore 
the relationship between hypertension and the selected risk 
factors and further develop a model for hypertension 
prediction.  

As the core component of MLP, BP training with 
generalized delta learning rule is an iterative gradient 
algorithm with the aim to obtain a classification model with 
high prediction accuracy by minimizing the root mean 

square error between the actual output of the model and 
desired output. In general, BP learning algorithm can be 
divided into two phases: propagation and weight update. The 
BP algorithm is depicted as shown in algorithm 1. 

 

D. Evaluation Measures 
A confusion matrix, also known as contingency table, 

contains the desired/actual class and predicted class of a 
classification model [20], and is applicable to evaluating the 
performance of a supervised learning algorithm such as MLP 
with BP algorithm, Support Vector Machine (SVM). Table II 
presents the confusion matrix case for the prediction of 
hypertension.  

To evaluate the performance of the constructed 
hypertension prediction model, in this study we used the 
following measures: 

1) Accuracy represents the total accuracy rate of 
classifying each case correctly. 

        Accuracy = (TP+TN)/(TP+FP+TN+FN).              (8) 

Algorithm 1: Back Propagation (BP) algorithm 

Input: N train samples, with inputs x(1), x(2), …, x(N); 
corresponding desired output y(1), y(2), …, y(N),  where x(i) 
=( x1(i), x2(i),…, xk(i)) is a vector with k features, � ≤ � ≤ �  

Output: NN: a neural network 

1: Initializing network weights and biases to small random values. 

2: Inputting a study sample (x(p),y(p)) (� ≤ � ≤ � ). 

3: 
Calculating the actual output of nodes in hidden layer: 

  �
�

� = �� �
��
� �

�

� − �
�

�=�

��

∑ � = 	� �
��
� �

�

− �

�

�=�

��

∑ ��� ∈ 	���������
�

� (3) 

4: Calculating the actual output of nodes in output layer: 

      �
�

= �� �
��
� �

�

� − �
�

�=�

��

∑ ��� ∈ 	���������
�            (4) 

5: Adapting weights Wij and biases bi, using (5) and (6): 

                  Δ�

�

��� = μ � �
�
� δ




����                                 (5) 

                        Δ�
�

��� = μ � δ



�����                                    (6) 

 , where μ is learning rate, �
�
���is output of node j at the 

iteration n. 
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         (7) 

  
, in which l is the layer, M is output layer, k is the number of 
output nodes of NN. 

6: If left study sample, goto step 2 

7: Calculating error function E, if E satisfying, stop; else, goto step 2 
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2) Sensitivity stands for the probability of correctly 
classifying an individual suffering from hypertension. 

                Sensitivity = TP/(TP+FN).                             (9) 

3) Specificity represents the probability of correctly 
determining that an individual is a non-hypertension. 

                 Specificity = TN/(FP+TN).                         (10) 

4) The Area Under the ROC Curve (AUC) value presents 
the probability that a classifier will rank a randomly chosen 
positive instance higher than a randomly chosen negative 
instance [21]. An area of 1 represents a perfect classification, 
while an area of 0.5 represents a worthless model. The AUC 
is equivalent to the Mann-Whitney-Wilcoxon sum of ranks 
statistic and is estimated as follows [22]: 

                 
� � �� � �� �� ��� ������

��� �	

− × +

=
×                (11) 

, in which s is the sum of ranks of true hypertension cases, 
pos denotes the number of hypertension cases, and neg 
denotes the number of non-hypertension cases.  

TABLE II.  A CONFUSION MATRIX FOR HYPERTENSION PREDICTION 

 Real situation 

Class predicted Hypertension Non-hypertension 

Hypertension TP FP 

Non-hypertension FN TN 

 

III. EXPERIMENTAL DESIGN AND RESULTS 
In this section, we illustrated the experiment design 

procedure in detail and then presented corresponding 
experimental results. To select hypertension-associated risk 
factors and establish a model for the prediction of 
hypertension with the selected risk factors, we first utilized 
binary logistic regression analysis on the experimental 
dataset to select factors that are significant to hypertension 
according to the statistically significant p-value; then we 
constructed and trained an ANN model with these risk 
factors. Through detailed illustration and systematic 
parameter selection for neural networks, we got the 
hypertension prediction model, followed by experimental 
results and analysis. 

A. Significant Risk Factors for Hypertension 
Logistic regression analysis has the capacity not only 

function as a prediction model, but also to select significant 
factors as inputs to the construction of other kind of 
prediction model and provide disease surveillance 

researchers an approach to figure out factors that are 
significant to a certain disease.  

In the selection of significant risk factors, multi-factor 
logistic regression model with partial maximum likelihood 
estimation and forward-step regression analysis was applied 
on the experimental dataset. Consequently, 11 hypertension-
relevant risk factors (exercise, diabetes, hyperlipemia, age, 
marriage, education, income, weight, height, sex, smoke, 
drink) were selected as significant ones and two factors 
(smoke100, smoke) were filtered out by setting statistical 
significance p-value less than 0.05 as variable inclusion 
criteria and p-value greater than 0.1 as variable exclusion 
criteria (Table III). After investigating the distribution of 
each variable of the dataset, we found that variable 
“smoke100” just took one value, thus it was not involved in 
the calculation of logistic regression analysis. Odd Ratio 
represented the 95% confidence interval in statistics. All the 
odd ratio values were located in confidence interval, which 
proved the effectiveness of the results. 

TABLE III.  MULTI-FACTOR LOGISTIC REGRESSION ANALYSIS FOR 
HYPERTENSION 

Variable p-value Odd Ratio (95% CI) 

Exercise <0.001 0.878(0.861~0.895) 

Diabetes <0.001 1.420(1.401-1.439) 

Hyperlipemia <0.001 2.112(2.077~2.148) 

Age <0.001 0.955(0.955~0.956) 

Marriage <0.001 0.987(0.981~0.993) 

Education <0.001 1.047(1.038~1.056) 

Income <0.001 1.079(1.073~1.084) 

Weight <0.001 0.989(0.988~0.989) 

Height <0.001 1.003(1.003~1.003) 

Sex <0.001 0.944(0.925~0.963) 

Smoke 0.270 1.006(0.996~1.016) 

Drink <0.001 0.967(0.950~0.984) 

 

B. Neural Network Prediction Model 
From its graphical representation, ANNs consists of one 

input layer, zero or more hidden layers and one output layer, 
and a collection of neurons with connectivity between two or 
more network layers. In general, the architecture of ANNs is 
determined by the number of inputs n and outputs m, the 
number of hidden layers and neurons in each hidden layer. In 
this study, binary logistic regression selected 11 risk factors 
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with significant p-value; hence, there were 11 inputs in our 
constructed neural network. Since our aim is to predict 
whether an individual suffers from hypertension or not, we 
set 2 outputs.  

On the basis of Kolmogorov theorem, theoretical analysis 
proves that feed-forward neural networks with single hidden 
layer have the capacity to approximately denote any 
continuous function and achieve arbitrary nonlinear mapping 
[23,24]. Considering that the training time increases with the 
number of hidden layers increasing, for achieving the 
tradeoff between speed and accuracy, artificial neural 
networks with single hidden layer were adopted in our 
research. As for the choice of the number of neurons h in the 
hidden layer, three rule-of-thumbs were used in the choice of 
the interval of its possible values rather than in a grid-based 
or exhaustive way to search for the best-fitting value of h. 

1) Boger and Guterman pointed out that the number of 
neurons in hidden layer should be more than two thirds of 
the number of inputs [25], and it was expressed as the 
following form in (12): 

                                 

� � �
�

� �≥
                                  (12) 

2) Berry and Linoff suggested that the number of neurons 
in hidden layer should be less than twice the number of 
inputs for circumventing high amount of computation during 
training [26], written as: 

                           � � �� �≤                                 (13) 

3) Blum suggested that the number of neurons in hidden 
layer should be limited between the number of inputs and 
outputs [27], presented as: 

                           �� � �≤ ≤                                  (14) 

By taking into consideration constraint conditions (12), 
(13) and (14) as a whole, we derived that, in the case of our 
study, the possible value of the number of neurons h was 
constrained between 8 and 11.  

In the choice of activation function of hidden layer and 
output layer, Karlik and Olgac compared five conventional 
activation functions, including Bi-polar sigmoid, Uni-polar 
sigmoid, Hyperbolic Tangent (Tanh), Conic Section, and 
Radial Bases Function (RBF) to evaluate the performance of 
MLP neural network architecture; and they concluded that 
activation function Tanh outperformed other activation 
functions in the vast majority of MLP classification and 
prediction applications [28,29]. Directed by their 
experimental results, we chose Tanh as the activation 
function in both the hidden layer and output layer.  

To achieve faster convergence with minimum oscillation, 
BP algorithm with learning rate μ  and momentum mc was 
adopted as an improvement to the basic BP algorithm. 
Empirical values were assigned to the two parameters. 
According to the discussion above, parameters of the neural 

network prediction model and their values were summarized 
in Table IV. 

TABLE IV.  A SUMMARY OF THE PARAMETERS OF ANNS 

Parameter Symbol Value 

Number of inputs n 11 

Number of outputs m 2 

Number of neurons in 
hidden layer h [8,9,10,11] 

Activation function of 
hidden layer hid_func Tanh 

Activation function of 
output layer out_func Tanh 

Learning rate μ  0.4 

Momentum mc 0.9 

 
On the basis of the detailed discussion of the architecture 

setting and parameter selection of the neural network model, 
the constructed hypertension prediction model with one 
hidden layer and two outputs was presented in Fig. 1. In the 
input layer, there were 11 variables obtained from the binary 
logistic regression analysis; the number of neurons the 
hidden layers ranged from 8 to 11. The outputs with 2 
neurons predicted whether an individual suffered from 
hypertension or not.  

 

 
 

                    Figure 1. Hypertension prediction model 

C. Experimental Results and Analysis 
To evaluate the performance of the constructed 

hypertension prediction model, we randomly partitioned the 
experimental dataset into train set and test set in the ratio of 
7:3. Train set was used for the training of the model to select 
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the optimized parameters and test set was used for the 
evaluation of the model. Specially, initial parameters of the 
model were listed in Table IV and training period varied 
from 100,000 to 200,000 iterations. We ran each experiment 
10 times and presented the averaged results and the standard 
deviations (SD) in Table V with different number of neurons 
in the hidden layer. 

From Table V, we can see that the average accuracy 
ranges from 71.91% to 72.12% with good stability and that 
the average Area Under operator-receiver Curve (AUC) is 
0.77 when h varied from 8 to 11. And the best prediction 
accuracy was found to be close to 72%. Senior physicians 
suggest that 30% is an acceptable error rate in the diagnosis 
of hypertension in practice [8]; therefore, prediction accuracy 
above 70% is acceptable and useful, and this indicates the 
effectiveness of our approach.  

TABLE V.  PREDICTION RESULTS WITH DIFFERENT NEURONS IN 
HIDDEN LAYER 

 
As a comparative study, we also conducted experiments 

by constructing a logistic regression-based prediction model 
with the selected risk factors being independent variables. 
Similar to that of neural network-based model, we randomly 
partitioned the experimental dataset into train set and test set 
in the ratio of 7:3. Training set was used to get the 
coefficients of each variable in logistic regression equation 
represented as (2), and the test set was to evaluate the 
performance. By setting 0.5 as the cutoff value, we inferred 
that the individual suffered from hypertension if predicted 
value was greater than 0.5, otherwise, the individual free 
from hypertension. After repeating the procedure 10 times, 
we presented the experimental results and standard 
deviations (SD) shown in Table VI.  

TABLE VI.  PREDICTION RESULTS FROM LOGISTIC REGRESSION 

 
     Through the comparison of the experimental results in 
Table V and Table VI, it was observed that logistic 
regression-based prediction model achieved 71.96% 
prediction accuracy and an AUC of 0.74. Though its 

performance were very close to that of neural network-based 
prediction model, it showed poor stability in prediction with 
much bigger standard deviations in sensitivity and specificity, 
while neural network-based model achieved good 
performance and comparatively small standard deviations 
when h was equal to 11. This indicated that neural networks 
were more powerful in adjusting themselves to new 
environments and more suitable to be employed in our study. 

IV. CONCLUSION 
With the continuing maturity of the Internet of Things 

(IoT) technology and its wide applications in various fields, 
constructing a prediction model for chronic diseases is an 
exploration of IoT technology on the data-analysis and 
decision-making level as well as a meaningful research in 
health care practice. Following this, in this paper, we 
proposed a logistic regression and artificial neural network-
based approach for chronic disease prediction. As a case 
study of hypertension, binary logistic regression analysis was 
first applied on experimental dataset to select significant 
hypertension risk factors by setting p-value. These selected 
variables were not only the inputs of neural networks, but 
also risk indicators to warn individuals to avoid or strengthen 
some certain factors. Then, on the basis of detailed 
discussion of the design of artificial neural network 
architecture and the choice of parameters, we constructed a 
Multi-Layer Perception (MLP) neural network with the 
selected risk factors as inputs. Finally, we conducted 
experiments using both artificial neural network model and 
the logistic regression model as a comparison.  Experimental 
results showed that integration of logistic regression and 
neural networks was an effective tool in the prediction of 
hypertension. 

In the future work, we plan to explore deeper in the 
prediction of hypertension by providing logistic regression 
analysis model more potential risk factors with the aim to 
find more novel and typical risk factors about hypertension 
and improve prediction accuracy, and further apply the 
approach in the prediction of other chronic diseases such as 
diabetes, asthma as a validation.  
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Neurons in 
Hidden Layer 

Sensitivity 
(%) 

Specificity 
(%) 

Accuracy 
(%) AUC 

h = 8 49.20  
± 3.53 

84.37  
± 1.73 

72.04  
± 0.22 

0.77  
± 0.002 

h = 9 48.69  
± 1.59 

84.69 
 ± 0.80 

72.06  
± 0.07 

0.77  
± 0.002 

h = 10 46.85 
 ± 5.59 

85.42 
 ± 2.25 

71.91  
± 0.43 

0.77  
± 0.003 

h = 11 48.91  
± 1.22 

84.62  
± 0.68 

72.12  
± 0.04 

0.77  
± 0.001 

 Sensitivity 
(%) 

Specificity 
(%) 

Accuracy 
(%) AUC 

Logistic 
regression 

44.68 
 ± 5.17 

 86.42  
± 2.66 

71. 96 
± 0.21 

0.74  
± 0.001 
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