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a b s t r a c t

Gene selection plays a crucial role in constructing efficient classifiers for microarray data classification,
since microarray data is characterized by high dimensionality and small sample sizes and contains
irrelevant and redundant genes. In practical use, partial least squares-based gene selection approaches
can obtain gene subsets of good qualities, but are considerably time-consuming. In this paper, we
propose to integrate partial least squares based recursive feature elimination (PLS–RFE) with two feature
elimination schemes: simulated annealing and square root, respectively, to speed up the feature selection
process. Inspired from the strategy of annealing schedule, the two proposed approaches eliminate a
number of features rather than one least informative feature during each iteration and the number of
removed features decreases as the iteration proceeds. To verify the effectiveness and efficiency of the
proposed approaches, we perform extensive experiments on six publicly available microarray data with
three typical classifiers, including Naïve Bayes, K-Nearest-Neighbor and Support Vector Machine, and
compare our approaches with ReliefF, PLS and PLS–RFE feature selectors in terms of classification
accuracy and running time. Experimental results demonstrate that the two proposed approaches
accelerate the feature selection process impressively without degrading the classification accuracy and
obtain more compact feature subsets for both two-category and multi-category problems. Further
experimental comparisons in feature subset consistency show that the proposed approach with
simulated annealing scheme not only has better time performance, but also obtains slightly better
feature subset consistency than the one with square root scheme.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The rapid development and wide use of microarray technology in
biomedical research facilitates the high throughput monitoring and
measurement of thousands of gene expression profiles simultaneously,
and enables their meaningful applications in the diagnosis of cancers,
the classification of tumor subtypes and the discovery of drug targets
at the molecular level [1–3]. Although various classifiers are con-
structed and used for the classification of gene expression profiles,
however, it has been shown that conventional machine learning
and statistical techniques have drawbacks in achieving satisfactory

classification performance due to the intrinsic nature of microarray
data characterized by high dimensionality (as many as thousands of
genes) and small sample sizes (as few as tens of samples) [4]. First, in
the classification of microarray data, the number of genes far exceeds
the number of samples, then “curse of dimensionality” occurs and
may lead to a classification model with poor generalization capability
and weak robustness. Second, a minimum of 10npnC training samples
are expected to produce a pre-determined level of performance for a
p-dimensional classification problem of C classes [5], whereas it is
often not practical to obtain corresponding number of microarray
samples in actual use due to the high cost of experiments [6]. Third,
the gene space that is involved in microarray data can have noisy and
irrelevant genes and often generates a classifier that has poor
classification performance [7]. One method to cope with these
problems is to conduct dimensionality reduction on the gene space
by removing noisy, irrelevant and redundant genes from the original
gene space using effective gene selection methods [8,9].
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Feature selection, which is also called gene selection in the
context of microarray data, is defined as the process of identifying
a small subset of features that contains the most discriminative
information from the original feature space to improve the classifica-
tion performance [10,11]. According to whether a classifier is used to
evaluate the goodness of candidate features in the feature selection
process, feature selection techniques are typically divided into three
categories: filter methods, wrapper methods and embedded meth-
ods [12]. Filter methods evaluate the quality of a feature using the
intrinsic properties of training samples, so they have a lower
computational complexity and better generalization ability and are
flexible in combination with various classifiers [13,14]. In contrast to
filter methods, wrapper methods are tightly coupled with a classifier
to evaluate the quality of a candidate feature and often use the
classification error rate as the evaluation criterion [12]. Benefited
from the fine-tuned interaction between the classifier and training
samples, wrapper methods tend to obtain better classification
performance than the filter methods [15,16]. There is a deeper
interaction in embedded methods between feature selection and
the construction of a classifier, because the feature selection process
is integrated into the construction of the classifier, which makes
embedded methods more computationally tractable than the wrap-
per methods. Typical embedded methods include decision tree
algorithms C4.5 and random forest [17]. Obviously, enumerating all
of the possible combinations of feature subsets and evaluating them
one by one guarantees obtaining the globally optimal feature subset,
while the computational complexity increases exponentially O(2N)
with the number of features N [18]. This approach is often unac-
ceptable because of having such a high time complexity in an actual
application, especially in the case of gene expression profiles that
have thousands of genes. To achieve the trade-off between computa-
tional efficiency and classification accuracy, researchers have pro-
posed a variety of feature subset generation methods, in which
feature ranking is an effective and efficient method to select an
optimal or near-optimal feature subset and can obtain good results
comparable to the globally optimal feature selection methods [19,20].

Partial least squares (PLS) is a non-parametric, multivariate
statistical analysis technique. Since PLS can capture the interaction
of feature–feature, it has been extensively used to do dimension-
ality reduction and high-dimensional data analysis [21]. In feature
selection, PLS can rank all the features through calculating the
projection importance of each feature, and select these features
that are ranked in the top [22,23]. A good feature ranking criterion
is not necessarily a good feature subset ranking criterion, because
the selected top-ranked features may be redundant to each other.
To obtain a high-quality feature subset, researchers propose to
combine the recursive feature elimination (RFE) search strategy
with PLS, called PLS–RFE, to evaluate the goodness of a feature and
then generate a ranking of all the features. RFE is a specific
sequential backward selection (SBS) scheme that starts from the
whole feature set and eliminates one least informative feature
progressively until a pre-defined number of features are obt-
ained [24]. In handling high-dimensional data, PLS–RFE not only
achieves comparable or better classification performance and
more compact gene subsets, but also has better generalization
ability and computational efficiency in comparison with the state-
of-the-art methods [21,22]. However, when the number of fea-
tures is large, it would require a large amount of CPU time to rank
all the features in the case of microarray data. Therefore, accel-
erating this process without degrading the high classification
performance would be of great value for gene expression analysis.

In this paper, we propose to integrate partial least squares based
recursive feature eliminationwith two elimination schemes: simulated
annealing (PLS–RFE-SA) and square root (PLS–RFE-SQRT), respectively,
to speed up the feature selection process. Inspired from the strategy of
annealing schedule [25,26], the two proposed approaches eliminate a

dynamic number of features rather than a constant number of features
during each iteration. In addition, a larger number of features are
eliminated at the beginning and a smaller number of features are
eliminated as the iteration proceeds. Since most of the removed
features are less relevant to the target class in the initial iterations
and the remaining features are more relevant to the target class in
later stages, this dynamic process is feasible and reasonable and
expected to obtain desirable performance.

The rest of this paper is organized in the following way. Basic
theories of partial least squares and partial least squares-based
recursive feature elimination are illustrated in Section 2. Section 3
details the two improved PLS–RFE approaches, followed by the
evaluation measures illustrated in Section 4. In Section 5, we
experimentally evaluate our proposed approaches on six publicly
available microarray data with three commonly used classifiers in
terms of classification accuracy, time cost to rank the features as
well as the feature subset consistency, and further compare the
proposed approaches with three other well-performing feature
selectors including PLS–RFE, PLS and ReliefF. The last section
concludes this paper with a brief summary and discussion.

2. Partial least squares-based feature selection

2.1. Partial least squares

Partial least squares (PLS) is a non-parametric, multivariate
statistical analysis technique. Since PLS can capture the relation-
ship among features, it can eliminate the effects of multicollinear-
ity between features through finding a linear regression model
that projects the explanatory variables (features) and predicted
variable (target class) to a new space [21]. In addition, PLS also
considers the correlation between explanatory variables and
predicted variable when conducting dimensionality reduction. In
practical use, PLS has proven to be effective in handling situations
where the number of features is significantly greater than the
number of samples, i.e. the situation of high dimensionality and
small sample sizes [21,22,27].

Let X ¼ F1; F2; …; Fp
� �¼ ½X1; X2; …; Xn�T be the nnp matrix with

n samples and p features/genes, and Y ¼ ½L1; L2; …; Lq� ¼
½Y1;Y2;…;Yn�T be the nnq matrix with n samples and q classes.
Explanatory variable X and predicted variable Y are both normalized
to be zero mean and one standard deviation for each column before
PLS is used. PLS establishes its solutions by finding a pair of
projection directions w and c so that t¼Xnw and s¼Ync meet the
following two criteria: (1) t and s contain as much variation
information of X and Y as possible and (2) maximizing the correlation
coefficient between t and s [21]. Combining the criteria (1) and (2),
PLS is required to maximize the covariance of t and s

max fCov t; sð Þg ¼ max f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var tð Þvar sð Þ

p
n r t; sð Þg ð1Þ

According to the statistical theories, we can derive the follow-
ing equation:

Cov t; sð Þ ¼ E t; sð Þ ¼wTE XYT
� �

c¼ wTSXYc ð2Þ

where SXY is the covariance matrix of X and Y. The PLS projection
directions w and c, therefore, can be obtained by maximizing the
following formula under the conditions of wTw¼ 1 and cTc¼ 1:

arg
w;c

max Cov t; sð Þ� � ¼ arg
w;c

max
wTSXYcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTw
	 
ðcTcÞ

q ð3Þ

By projecting X on the direction of w and projecting Y on the
direction of c, we can obtain the first pair of PLS components
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t1 ¼ Xnw and s1 ¼ Ync, and then establish three regression equa-
tions between Y and t1; Y and s1, X and t1. This process terminates
if the predetermined precision is achieved by the regression
equations; otherwise, the second pair of PLS components t2 and
s2 are extracted from the residuals. Repeat the above process until
the halt condition is satisfied. Statistically Inspired Modificat-
ion of PLS (SIMPLS) provides us an efficient solution fw1;w2;

…; wnfacgARp and c1; c2;…; cnf ac
� �

ARq to PLS, in which nfac is
the number of factors of SIMPLS. The computational complexity of
SIMPLS is O(np) on a dataset with n samples and p features [21,28].

2.2. Partial least squares with recursive feature elimination

PLS extracts t ¼ ½t1; t2; …; th� components, which contain as
much as variation information of X and Y. In feature selection, we
need to analyze the impact of each explanatory variable Xi to Y and
rank these explanatory variables according to a given criterion.
Variable importance in projection (VIP) provides us a metric to
quantitatively measure the impact [29]. Given the component th,
its explanation to the predicted variable Y is

Rd Y; thð Þ ¼
Pq

i ¼ 1 r
2ðYi; thÞ
q

ð4Þ

where r Yi; thð Þ is the correlation coefficient between two random
variables Yi and th. We can calculate VIP of each Xi with all the
components t ¼ t1; t2;…; th½ � using the following formula:

VIP Xið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pn

Ph
k ¼ 1 RdðY ; tkÞw2

ikPh
k ¼ 1 RdðY ; tkÞ

vuut ð5Þ

where wik is the ith weight of axis wk weighting the marginal
contribution of Xi to the component tk. The interpretation of Xi to
Y is through tk and Xi plays an important role in determining tk,
so a strong explanatory power of tk to Y indicates that the
explanatory power of Xi to Y should be regarded to be significant
and that larger VIP(Xi) indicates more importance of Xi in inter-
preting Y. Therefore, VIP provides us a basis to rank the explana-
tory variables for feature selection.

A good feature ranking criterion is not necessarily a good feature
subset ranking criterion. To select a feature subset of high quality,
researchers propose to combine recursive feature elimination (RFE)
with PLS (PLS–RFE) to evaluate the goodness of a feature and then
rank all the features progressively [22]. RFE is a specific sequential
backward selection scheme, and its main idea is to start with all
features: (a) select the least discriminative feature based on a given
criterion such as VIP in PLS; (b) eliminate it from the original feature
space; and (c) repeat the above procedure until all the features are
ranked or a predefined number of features are obtained [30].
Algorithm 1 presents the pseudo-code of PLS–RFE. PLS–RFE has
experimentally proven to obtain better classification accuracy, stabi-
lity and more compact gene subsets in comparison with other state-
of-the-art feature selection methods in handling microarray data [22].
In addition, PLS–RFE exhibits better robustness to noises and general-
ization ability in predicting unseen samples.

Algorithm 1. PLS–RFE algorithm

Input: dataset Xnnp with attributes S, encoded target class Ynnq

with q classes
Output: the ranked gene set R
((1): initialize R¼[ ], and nfac¼q;
((2): while |S|Znfac do
((3): D¼X(, S); //training set projected over S
((4): calculate Rd and W using SIMPLS(D, Y, nfac);
((5): use Eq. (5) to compute VIP of each gene in S;
((6): VIP(Xf)¼min(VIP); //find the gene with minimal

VIP

((7): R¼[S(f), R]; //add it to R
((8): S¼S(1:f�1, fþ1:|S|); //delete it from S
((9): end
((10): return R¼[S, R].

3. Improved PLS–RFE methods

Feature selection has proven to be a NP-hard problem and it is
prohibitive to find the optimal feature subset by enumerating all
the possible feature subset combinations or by adopting the
branch and bound strategy [12,31]. In PLS–RFE, the sequential
backward selection strategy is used to rank the features and select
feature subsets of good qualities. Although PLS–RFE is efficient and
has the time complexity O(nnp) to generate a rank of features on a
dataset with n samples and p features in each iteration [32], it
would be considerably time-consuming if only one feature is
eliminated during each iteration and the overall time complexity
would be approximate O(nnp2). Obviously, PLS–RFE would take a
large amount of CPU time to handle the situations where there are
thousands of or tens of thousands of features. Therefore, speeding
up the feature ranking process of PLS–RFE without degrading the
high classification performance would be of great value for gene
expression analysis. In contrast to the feature elimination strategy
used in PLS–RFE, eliminating a number of features rather than
only one least informative feature during each iteration seems to
be a feasible approach. Then, how many features are to be
eliminated during each iteration determines the quality of the
final selected feature subset and is our main focus in this study.

In heuristic search methods, simulated annealing (SA) performs
well in finding a good approximation to the global optimum in a
large search space for a variety of combinatorial optimization
problems [25]. Inspired from the process of annealing metallurgy,
SA starts from a random state and conducts the search with a
designed annealing schedule. Generally, in the early search stage,
there is a high probability for SA to accept a move in the search
space to a worse solution. As the search proceeds, the probability
to accept a worse solution decreases and SA gradually converges to
the approximately optimal solution.

Referring to the ideology of simulated annealing, we propose to
integrate PLS–RFE with simulated annealing (PLS–RFE-SA) scheme
to accelerate the feature selection process with the following
strategies: (a) PLS–RFE-SA eliminates a large number of features
from the candidate features in the initial iterations and (b) the
number of eliminated features decreases as the iteration proceeds.
In PLS–RFE-SA, we use such an annealing schedule that ð1=jþ1Þ of
the remaining features are eliminated from the candidate features
in the jth iteration, which means that after the first iteration, half
of the original features are eliminated, and the one-third of the
remaining features are eliminated after the second iteration.
Specially, if the number of remaining features is less than the
value of the iteration counter, only one feature is eliminated. This
enables PLS–RFE-SA to significantly reduce the computational cost
of PLS–RFE in feature selection. Algorithm 2 presents the pseudo-
code of the proposed PLS–RFE-SA (lines 6–10 represent the
simulated annealing schedule). It should be noteworthy that
although we name it as PLS–RFE-SA, it works in a quite different
way from the classical simulated annealing algorithm, which
accepts a worse solution during annealing. Actually, we utilize
SA to control the decay rate and further determine the number of
genes to be eliminated during each iteration, thus, we do not
consider the case that unfavorable features could be accepted by
random probability.

Likewise, we propose another feature selection approach which
eliminates square root

ffiffiffiffiffiffiffiffiffi
jSj

p
features from the candidate features

during each iteration (jSj is number of remaining features before
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each iteration). We note this approach as PLS–RFE-SQRT, and the
pseudo-code of PLS–RFE-SQRT can be obtained by substituting
Sj jnð1=jþ1Þ with

ffiffiffiffiffiffiffiffiffi
jSj

p
(line 6) in Algorithm 2.

Algorithm 2. PLS–RFE with simulated annealing

Input: data Xnnp with attributes S, encoded target
class Ynnqwith q classes

Output: the ranked gene set R
((1): initialize R¼[ ], nfac¼q, and j¼1;
((2): while |S|Znfac do
((3): D¼X(, S); //training set projected over S
((4): calculate Rd and W using SIMPLS(D, Y, nfac);
((5): use Eq. (5) to compute VIP of each gene in S;
((6): repeat |S|nð1=jþ1Þ times do //eliminate a number

of genes
((7): VIP(Xf)¼min(VIP); //find the gene with minimal

VIP
((8): R¼[S(f), R]; //add it to R
((9): S¼S(1:f�1, fþ1:|S|); //delete it from S
((10): end
((11): j¼ jþ1; //iteration counter
((12): end
((13): return R¼[S, R].

4. Evaluation measures

To evaluate the performance of PLS–RFE-SA and PLS–RFE-SQRT,
we compare them with PLS–RFE in terms of classification accuracy
and actual running time. According to the discussion in the
previous section, both PLS–RFE-SA and PLS–RFE-SQRT are
expected to speed up the feature selection process impressively.
To evaluate the quality of a feature selection method, classification
accuracy is a direct and effective criterion and is much more
important in practical use, because a feature selector contributing
less to the microarray data analysis is of little use [33]. Meanwhile,
we compare them in terms of the size of the final selected feature
subset that correspondingly achieves the best classification accu-
racy as well. In microarray data classification, selecting a compact
gene subset is preferable for further gene analysis and biological
validation and also indicates the power of a feature selection
method in selecting informative genes [34].

Besides these, to measure the consistency of two feature
subsets obtained by two different feature selection methods,
feature subset consistency is used to measure the similarity
between two feature subsets. In this study, a similarity-based
approach is adopted to quantify the consistency. Given two feature
subsets fi and fj of equal size generated by two different feature
selection methods, Kuncheva put forward Kuncheva Index (KI) to
measure the consistency between fi and fj using the following
formula [35]:

KI f i; f j
� �

¼ rnðN�s2Þ
snðN�sÞ ¼ r�ðs2=NÞ

s�ðs2=NÞ ð6Þ

where s¼ |fi|¼ |fj| denotes the feature subset size, |r¼ f i\ f j | is the
number of common features of the two subsets, N is the size of the
original feature space, and s2=N term is a correction term. The
value of KI satisfies �1oKI f i; f j

� �
r1, and a greater value of KI

indicates that the two feature selection methods tend to select a
larger number of common features. For simplicity and easy
calculation, we use the following formula to calculate the con-
sistency in our study:

KI f i; f j
� �

¼ j f i\ f j j
j f i j ð7Þ

5. Experimental results and analysis

5.1. Experimental dataset and experimental setup

Experiments were conducted on six publicly available micro-
array datasets that cover both two-category and multi-category
classification problems. A brief summary to the six datasets is
presented in Table 1. The last column SFR denotes the ratio
between the number of samples and the number of genes. From
SFR, we can see that there exists a great imbalance between the
number of samples and the number of genes in each microarray
data. All the microarray datasets used in this study can be down-
loaded from http://www.gems-system.org/, and their brief
descriptions are given in the following.

(1) Brain tumor dataset: Brain consists of 5 human brain tumor
types, including medulloblastoma, malignant glioma, atypical
teratoid/rhabdoid turmor (AT/RTs), neuroectodermal tumors
(PNETS) and normal cerebellum [36]. Brain dataset contains 90
samples in total, consisting of 60 medulloblastoma samples, 10
malignant glioma samples, 10 AT/RT samples, 6 PNETs sam-
ples, and 4 normal cerebellum samples. Each sample includes
5920 genes. The task is to construct a classifier on this dataset
and distinguish these five tumor types.

(2) Leukemia1 dataset: A collection of leukemia patient samples
from bone marrow and peripheral blood is used for distin-
guishing between acute myeloid leukemia (AML) and acute
lymphoma leukemia (ALL) tissues. This dataset contains 72
samples with 7129 genes: 25 AML samples and 47 ALL samples
[2]. The classification task is to distinguish these two types of
leukemia.

(3) Leukemia2 dataset: A collection of leukemia patient samples
from bone marrow and peripheral blood is used for distin-
guishing between acute myeloid leukemia (AML) and acute
lymphoma leukemia (ALL). The data for ALL is further divided
in terms of B cells and T cells. The task is to construct a
classifier to classify these three subtypes of leukemia accord-
ing to the gene expression profiles. Leukemia2 consists of 72
samples with 5327 genes, and of these samples, 38 are of AML,
9 are of ALL-B and 25 are of ALL-T [2].

(4) Diffuse Large-B-Cell Lymphoma (DLBCL) dataset: Diffuse large
B-cell lymphomas (BCL) and follicular lymphomas (FL) are two
B-cell lineage malignancies [37]. There are 7129 genes with 58
BCL samples and 19 FL samples in the DLBCL data. The task on
this dataset is to build a classification model to discriminate
BCL from FL.

(5) Prostate cancer dataset: This dataset contains 50 non-tumor
prostate samples and 52 prostate tumors, and each sample is
described by 12,600 genes [38]. The classification task is to
identify the expression patterns that correlate with the dis-
tinction of prostate tumor from the normal.

(6) Ovarian cancer dataset: There are 15,154 identities in this
dataset. It contains 253 samples (162 ovarian samples and 91
controls). The goal of this experiment is to distinguish ovarian

Table 1
Experimental dataset description.

Dataset #Genes #Samples #Classes #SFR

Brain 5920 90 (60/10/10/4/6) 5 0.015
Leukemia1 7129 72 (47/25) 2 0.010
Leukemia2 5327 72 (38/9/25) 3 0.014
DLBCL 7129 77 (58/19) 2 0.011
Prostate 12,600 102 (50/52) 2 0.008
Ovarian 15,154 253 (91/162) 2 0.017
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cancer from non-ovarian cancer using the proteomic spectra
data [39].

(7) Given a microarray dataset D¼ f Xi; yi
	 
jXiAX; yiAYl;1r

irng with n samples, Yl ¼ l1; l2;…; lq
� �

is the class label set
with q different classes. First, we are required to encode Yl as
Y ¼ ðyijÞnnq Af0; 1gnnq in the following way.

yij ¼ I yi ¼ lj
	 
¼

1 yi ¼ lj
; i¼ 1; ::; n; j¼ 1;…q:

0 others

8><
>:

ð8Þ

Then, we can use SIMPLS algorithm to calculate the VIP of each
gene. The only parameter in solving partial least squares is nfac, and
the recommended empirical value of nfac is the number of classes for
each microarray data, and it is used in our experiments [22].

5.2. Performance of classification

For microarray data that has high dimensionality and small
sample sizes, to evaluate the quality of the finally selected feature
subset, a ten-fold cross validation is commonly used to generate
the independent training set and test set in order to obtain
objective classification accuracy [40]. In the ten-fold cross valida-
tion scheme, each one of the ten folds is used as the test set and
the remaining nine folds are used as the training set for the
classifier construction, and the final classification accuracy is the
average of the ten results [41]. Each of the feature selection
algorithms is then applied on the training set to rank all the
features and select the m top-ranked features. The classifier is
trained on the training set projected over the selected features and
the test set projected over the selected features is evaluated by the
constructed classifier. On the top m features, classification accu-
racy and the size of the selected feature subset with maximum
classification accuracy are recorded. To demonstrate the effective-
ness of partial least squares-based feature selection methods, in
our experimental study, besides PLS–RFE, and the proposed PLS–
RFE-SA and PLS–RFE-SQRT, we also include two other well-
performing feature selectors, ReliefF and PLS, as a comparison.
PLS is a feature ranking approach and ranks features in descending
order according to the value of VIP as we previously discussed in
Section 2 [29,42]. The greater VIP of a feature it is, the more
important it is in contributing to the classification performance.
Being one of the classical distance-based filter measures for
feature selection, ReliefF has great power in choosing discrimina-
tive features and good stability to the perturbation of training set,
even if it fails to consider the redundancy among the selected
features [43]. In our experiments, we use the default parameter
values with 5 neighbors and 30 instances in ReliefF, and set nfac in
PLS equal to the number of categories in each microarray data.
Studies have suggested a few genes are sufficient in constructing
an effective classifier for gene expression profile classification [34].
To find the best feature subset that can obtain the best classifica-
tion accuracy, we consider the 50 top-ranked features and further

search the best feature subset in it. Specifically, we first rank all the
features in descending order according to a given criterion, and
then generate feature subsets by picking the top m features
sequentially, where m¼1, 2,…, 50. In this way, we can obtain fifty
feature subsets and construct classifiers on training set projected
over each of the feature subsets. Then, the one that achieves the
best classification accuracy corresponds to the best feature subset
[8]. If two or more feature subsets produce equal classification
accuracy, the one with smallest number of features is selected as
the best feature subset.

To evaluate the quality of the finally selected feature subset,
three commonly used classifiers with different metrics are used:
Naïve Bayes (NB) [44], 3-Nearest-Neighbor (3NN) with Euclidean
distance metric [45], and Support Vector Machine (SVM) with
linear kernel and default parameter values [46]. Experimental
comparisons are first conducted in terms of the best classification
accuracy and corresponding number of selected genes. To show
the effectiveness of the two proposed approaches (PLS–RFE-SA
and PLS–RFE-SQRT), we take PLS-RFE as the baseline approach and
use a Wilcoxon signed-rank test with a significance interval of 95%
to determine whether there is any difference between the accu-
racy of PLS–RFE and the accuracies of other four feature selectors.
In our experiments, the difference of accuracy is significantly
different if its p-value is less than 0.05.

Tables 2–4 present the experimental results for NB, 3NN and
SVM, respectively. For comparison, the last column “Unselected”
presents the classification accuracy without using feature selec-
tion. The last but one row “AVE” shows the average classification
accuracy and the average number of selected genes for each
method. We also make a comparison between PLS–RFE and other
methods at the aspect of Win/Tie/Loss. The last row “W/T/L”
presents the number of times that the corresponding method is
win/tie/loss in accuracy compared with PLS–RFE. In addition,
notation “n” represents that the accuracy in the entry is signifi-
cantly better than the corresponding one of PLS–RFE, and notation
“\widehat” indicates that the accuracy in the entry is significantly
worse than the corresponding one of PLS–RFE according to the
Wilcoxon signed-rank test.

According to the results in Tables 2–4, we can observe that
compared to the situation without using feature selection, all the
feature selection methods greatly improve the classification accuracy
and reduce the feature dimensionality, which demonstrates the
effectiveness of gene selection methods in classifying microarray
data. Specifically, for the case of NB, the average accuracy of PLS–RFE-
SA and PLS–RFE-SQRT on the all the experimental datasets are
96.76% and 96.67%, respectively, which are comparable to 96.55% of
PLS–RFE and outperform 92.74% of PLS and 95.52% of ReliefF. From
the entry “W/T/L”, it is noted that the PLS–RFE-SA and PLS–RFE-SQRT
achieve comparable accuracy to PLS–RFE, and that PLS and ReliefF
are inferior to PLS–RFE in the majority of datasets. For instance, the
entry “2/3/1” in Table 2 denotes that PLS–RFE-SA wins 2 cases, ties
3 cases and loses 1 case in comparisonwith PLS–RFE, and entry “2/2/
2” means that PLS–RFE-SQRT wins 2 cases, ties 2 cases and loses

Table 2
Experimental results with Naïve Bayes.

Dataset PLS–RFE PLS–RFE-SQRT PLS–RFE-SA PLS ReliefF Unselect

Brain 90.44 13 90.00 45 91.31 48 76.97\widehat 50 84.72\widehat 45 87.67
Leukemia1 98.75 14 98.75 8 98.75 14 97.32 9 97.32\widehat 9 98.57
Leukemia2 100.00 26 100.00 22 100.00 17 96.07\widehat 40 98.57 37 97.33
DLBCL 95.00 21 96.07 30 95.00 8 91.00\widehat 38 97.50 7 80.72
Prostate 95.09 15 96.09 23 95.27 12 96.18 42 96.18 43 63.00
Ovarian 100.00 21 99.62 24 99.62 22 98.82 46 98.83 44 92.49
AVE 96.55 18 96.76 25 96.67 20 92.74 38 95.52 31 86.63
W/T/L – 2/2/2 2/3/1 1/0/5 2/0/4 0/0/6
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2 cases compared with PLS–RFE. In addition, we can see that both
PLS–RFE-SA and PLS–RFE-SQRT achieve high accuracies, which are
not significantly different from that of PLS–RFE (Wilcoxon signed-
rank test with the 95% confidence interval). Furthermore, the size of
the final selected feature subsets of PLS–RFE-SA and PLS–RFE-SQRT
are comparable to that of PLS–RFE, and are much smaller than these
of PLS and ReliefF, which indicate that the two proposed approaches
are able to select a compact subset of discriminative features. For the
case of 3NN and SVM, similar conclusions can be drawn from
Tables 3 and 4, respectively.

Additionally, it is observed from Tables 2–4 that the selected
feature subset exhibits inconsistent performances for different
classifiers on the same microarray dataset. To reduce the bias of
a feature subset evaluation based on a specific classifier, we
calculate the mean classification accuracy of the three classifiers
for each of the feature selection methods. Fig. 1 presents the
experimental results, where X-axis refers to the number of
selected features and Y-axis represents the mean accuracy of the
three classifiers on corresponding feature subsets. From Fig. 1, we
can observe that both PLS–RFE-SA and PLS–RFE-SQRT achieve
comparable average accuracy to PLS–RFE on all the microarray
datasets and consistently outperform PLS and ReliefF, which
further demonstrates the effectiveness of the two proposed
approaches and their robustness to the choice of classifiers.

5.3. Time cost comparsion

In the previous section, it is concluded that both PLS–RFE-SA
and PLS–RFE-SQRT not only achieve comparable classification
performance to PLS–RFE, but also outperform PLS and ReliefF in
classification accuracy and the size of selected feature subsets. In
this section, we investigate the computational cost of the two
proposed approaches to generate a rank of the original features
and compare them with PLS–RFE. All the algorithms are imple-
mented with matlab programing language, and experiments are
conducted on a Quad-core Intel Core i5 CPU (3.2 GHz processor
and 4 G RAM). Table 5 presents the time cost comparison of the
three approaches on the six microarray datasets. In each cell, the

time(s) cost is followed by the number of iterations that are
required to rank all the features.

From Table 5, one can observe that there are significant
differences in the time cost of the three approaches, and that
PLS–RFE-SA is much faster than the other two and PLS–RFE-SQRT
is much faster than PLS–RFE on the all the experimental datasets.
Even on the small dataset Leukemia2 with 72 samples and 5327
genes in each sample, it takes PLS–RFE 2.9 h and PLS–RFE-SQRT
187.5 s to rank all the features, while PLS–RFE-SA only consumes
19.5 s, which is about 530 times faster than PLS–RFE and 10 times
faster than PLS–RFE-SQRT. For the dataset with a larger number of
genes, the difference is much more significant. For instance, the
time cost on Ovarian is about 10.8 h for PLS–RFE, 429.5 s for PLS–
RFE-SQRT and only 31.4 s for PLS–RFE-SA.

Furthermore, we take Leukemia2, DLBCL, Prostate and Ovarian
as examples to show the relationship between the number of
iterations and the number of remaining features. Fig. 2 presents
the iteration process curves of PLS–RFE-SA and PLS–RFE-SQRT on
the four datasets. Since PLS–RFE eliminates one feature in each
iteration, it is a straight line with 135 degree tilt angle and would
take large space in the figure. Hence, the curve of PLS–RFE is not
drawn in Fig. 2. The X-axis refers to the number of iterations and
Y-axis refers to the corresponding number of remaining features
after each iteration. From Fig. 2, one can observe that PLS–RFE-SA
eliminates a large number of features in the initial iterations, and
then removes a smaller number of features as the iteration
proceeds. In contrast to PLS–RFE-SA, PLS–RFE-SQRT eliminates a
smaller number of features in each iteration and converges slower.

The time complexity of SIMPLS to calculate VIP on a dataset with n
samples and p features is O(nnp), so the computational cost of the
partial least squares based approaches is mainly determined by: (a) the
total number of iterations required to rank all the features and (b)the
number of features in running SIMPLS. Because the proposed approach
with simulated annealing scheme has a faster decay rate and conver-
gence rate than the one with square root scheme, therefore, this
theoretically explains why PLS–RFE-SA outperforms both PLS–RFE
and PLS–RFE-SQRT in terms of running time, which is also experimen-
tally supported by the results in Table 5 and Fig. 2.

Table 3
Experimental results with 3-nearest-neighbor.

Dataset PLS–RFE PLS–RFE-SQRT PLS–RFE-SA PLS ReliefF Unselect

Brain 92.56 33 92.67 30 92.67 29 80.53\widehat 39 86.00\widehat 35 89.53
Leukemia1 100.00 12 98.75 7 100.00 12 98.75 50 96.07\widehat 47 90.36
Leukemia2 100.00 39 100.00 36 100.00 34 97.32\widehat 38 98.57 23 89.23
DLBCL 100.00 16 100.00 11 100.00 15 94.82\widehat 43 98.75\widehat 40 85.48
Prostate 98.09 42 98.09 17 98.00 12 97.00\widehat 15 94.18\widehat 11 81.46
Ovarian 100.00 6 100.00 14 100.00 6 100.00 38 98.85 30 94.08
AVE 98.44 25 98.25 19 98.45 18 94.74 37 95.40 31 88.36
W/T/L – 1/4/1 1/4/1 0/1/5 0/0/6 0/0/6

Table 4
Experimental results with support vector machine.

Dataset PLS–RFE PLS–RFE-SQRT PLS–RFE-SA PLS ReliefF Unselect

Brain 97.78 33 96.67 24 96.67 27 82.22\widehat 41 85.56\widehat 37 85.56
Leukemia1 100.00 16 98.61 6 100.00 16 97.22\widehat 44 97.22\widehat 30 95.83
Leukemia2 98.61 8 98.61 8 98.61 8 97.22 38 98.61 5 93.06
DLBCL 98.70 13 98.70 7 98.70 13 96.10\widehat 42 98.70 39 97.40
Prostate 98.04 11 98.04 15 98.04 11 96.08\widehat 14 97.06\widehat 5 91.18
Ovarian 100.00 6 100.00 10 100.00 6 100.00 36 99.61 22 100.00
AVE 98.86 15 98.44 12 98.67 14 94.81 36 96.13 23 93.84
W/T/L – 0/4/2 0/5/1 0/1/5 0/2/4 0/1/5
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5.4. Feature subset consistency

In this section, we compare the consistency of PLS–RFE, PLS–
RFE-SA and PLS–RFE-SQRT by calculating the feature subset
similarity between any two of them using formula (7). Fig. 3
presents the results of the top 50 genes, where RFE&SA means the
feature subset consistency between two feature subsets obtained
by PLS–RFE and PLS–RFE-SA, respectively, RFE&SQRT is the feature
subset consistency of PLS–RFE and PLS–RFE-SQRT, and SA&SQRT is
the feature subset consistency of PLS–RFE-SA and PLS–RFE-SQRT.

Fig. 1. Mean classification accuracy vs. the number of selected genes on the six microarray datasets. (a) Leukemia2, (b) DLBCL, (c) Prostate, (d) Ovarian.

Table 5
Time(s) cost comparison of the three feature selectors.

Dataset PLS–RFE PLS–RFE-SQRT PLS–RFE-SA

Brain 34941.0 (5920) 605.8 (153) 59.7 (135)
Leukemia1 8375.3 (7129) 136.7 (168) 14.3 (150)
Leukemia2 10327.0 (5327) 187.5 (145) 19.5 (128)
DLBCL 8303.0 (7129) 134.0 (168) 12.8 (150)
Prostate 26044.0 (12,600) 311.7 (224) 24.5 (198)
Ovarian 39026.0 (15,154) 429.5 (246) 31.4 (216)
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X-axis refers to the top k genes obtained by each feature selector,
and Y-axis refers to the corresponding feature subset consistency
between two gene subsets.

One can observe that the consistency between any two of them
on all the datasets is greater than 0.8 when the number of selected
features is not less than 10, which indicates that the three methods
can select very similar genes. This is probably because the three
approaches adopt the same criterion in calculating the relevance
of a feature to the target class and the partial least squares
technique can effectively eliminate the effects of multicollinearity
and identify the relevant explanatory variables. Meanwhile, this
partially explains why PLS–RFE-SA and PLS–RFE-SQRT can obtain
comparable classification accuracy to PLS–RFE. Further, we can
observe that the feature subset consistency between PLS–RFE and
PLS–RFE-SA is greater than that of PLS–RFE and PLS–RFE-SQRT,
which means that PLS–RFE-SA is more likely to select the same
genes as PLS–RFE than PLS–RFE-SQRT. In particular, PLS–RFE-SA
selects the same subset of genes as PLS–RFE on DLBCL, Leukemia1
and Leukemia2 when the number of selected genes is less than 35,
and can select exactly the same gene subset on Prostate and
Ovarian when the number of selected genes is less than 50.
Additionally, it should be noted that some parts of the green curve
in each figure are missing. In fact, those parts overlap the
corresponding blue parts and are covered by the blue parts. This
is because PLS–RFE-SA selects the same feature subset as PLS–RFE
and the consistency between PLS–RFE-SQRT and PLS–RFE is equal
to the consistency between PLS–RFE-SQRT and PLS–RFE-SA.

Overall, according to the experimental results and analysis, we
conclude that in comparison with PLS–RFE, both PLS–RFE-SA and
PLS–RFE-SQRT achieve comparable classification accuracy while
significantly speeding up the feature selection process for both the

two-category and multi-category microarray data classification
problems. This demonstrates the effectiveness of the two pro-
posed approaches. In a further analysis, we can see that PLS–RFE-
SA not only runs faster than PLS–RFE-SQRT, but also has slightly
better feature subset consistency.

6. Conclusions

Feature selection, or gene selection in the context of microarray
data, plays crucial roles in the analysis of gene expression profiles.
Correspondingly, various machine learning and statistical learning
techniques are used to identify a small subset of discriminative
features from the original feature space. In practical use, partial
least squares-based recursive feature elimination (PLS–RFE)
approach is experimentally demonstrated to obtain feature sub-
sets of good qualities in comparison with the state-of-the-art
feature selectors. However, it is computationally expensive in
handling datasets characterized by high dimensionality such as
microarray data with thousands of genes. In this paper, we
proposed to integrate two dynamic feature elimination schemes,
simulated annealing scheme and square root scheme, respectively,
into PLS–RFE to speed up the feature selection process. Inspired
from the strategy of the annealing schedule, the two proposed
approaches eliminate a number of genes rather than just one least
informative gene during each iteration and the number of elimi-
nated genes decreases as the iteration proceeds. To show the
effectiveness and efficiency of the two proposed approaches, we
included two other feature selectors, PLS and ReliefF as a compar-
ison, and conducted experimental comparisons on six publicly
available microarray data in terms of classification accuracy and

Fig. 2. Illustration to the iteration process on four microdata datasets.
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running time. In addition, we used Naïve Bayes, 3-Nearest-
Neighbor and Support Vector Machine to evaluate the quality of
the final selected features. Experimental results show that the two
proposed approaches achieve comparable classification accuracy
to PLS–RFE and outperform PLS and ReliefF, and that PLS–RFE is
greatly accelerated with the two proposed feature elimination
schemes. Furthermore, a further comparison in running time and
feature subset consistency was conducted between the two
proposed approaches and indicates that the one with simulated
annealing scheme not only runs much faster, but also achieves
better feature subset consistency than the one with square root

scheme. Notably, in our study, although we name the approach,
which combines PLS–RFE and simulated annealing, as PLS–RFE-SA,
we do not consider the case that PLS–RFE-SA accepts some
unfavorable features by random probability during each iteration.
Therefore, investigating whether the classical simulated annealing
algorithm in the context of PLS–RFE, which retains a part of
unfavorable features during each iteration, could obtain better
feature subsets than PLS–RFE-SA is an interesting issue for future
research. Furthermore, although we focused only on the gene
expression profiles and demonstrated the effectiveness and effi-
ciency of the proposed approaches merely using microarray data,

Fig. 3. Feature subset consistency between PLS–RFE, PLS–RFE-SA and PLS–RFE-SQRT. (a) Brain, (b) Leukemia1, (c) Leukemia2, (d) DLBCL, (e) Prostate, (f) Ovarian.
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they are general feature selection methods that can be applied to
other fields that also suffer from curse of dimensionality such as
text categorization [47], proteomics and RNA-Seq datasets [48].
Our future research work will extend the proposed approaches
and test their performance in these fields.

7. Summary

Since microarray data is characterized by high dimensionality
and small sample sizes and contains irrelevant and redundant
genes, gene selection plays a crucial role in constructing effective
and efficient classifiers in classifying microarray data. Accordingly,
various machine learning and statistical techniques have been
proposed and applied. In practical use, partial least squares based
feature recursive feature (PLS–RFE) has been experimentally
shown to obtain feature subsets of good qualites in comparison
with other state-of-the-art feature selectors, therefore, it can help
construct powerful classifiers. However, it is considerably time-
consuming in handling datasets with high-dimensionality such as
the microarray data. How to accelerate this process without
degrading the high accuracy is the mian focus of our study.

In this paper, we propose to accelerate PLS–RFE with two
improved feature elimination schemes, similated annealing
scheme and square root scheme. In contrast with the classical
approach which eliminates only one least informative feature, the
two proposed approaches eliminate a larger number of features in
the initial iterations and eliminate a smaller number of features as
the iteration proceeds. Specifically, the approach with simulated
annealing scheme eliminates |S|/(jþ1) features during each itera-
tion, and the one with square root scheme eliminates

ffiffiffiffiffiffiffi
jSj

p
features during each iteration, where |S| is the number of remain-
ing features before each iteration and j is the iteration counter.
Obviously, the two approaches would definitely accelerate the
feature selection process by reducing the running times of SIMPLS
required to rank all the features.

To verify the effectivenss of the two proposed approaches,
experiemental comparisons were conducted on six publicly avail-
able microarry datasets in terms of classification accuracy and the
size of the final selected feature subsets. Besides in comparison
with PLS–RFE, we include two other well-performing feature
selectors, PLS and ReliefF as well. In addition, to evaluate the
quality of the final selected feature subsets, three commonly used
classifiers with different metrics, Naïve Bayes, 3-Nearest-Neighbor
and Support Vector Machine are used in our study. Experimental
results show: (a) that the two proposed approaches obtain
comparable classification accuracy to PLS–RFE and outperform
both PLS and ReliefF; (b) and that the size of the final selected
feature subsets of our approaches is comparable to that of PLS–RFE
and is much smaller than that of PLS and ReliefF, which is
preferable in the further analysis of microarray data and biological
validation;(c) and that the two proposed approaches greatly speed
up the feature selection process. Furthermore, experimental com-
parisons were conducted between the two proposed approaches
in feature subset consistency and running time. Experimental
results show that the approach with simulated annealing scheme
has better feature subset consistency and time performance in
comparison to the one with square root scheme.
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