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a b s t r a c t 

Dimensionality reduction techniques aim to transform the high-dimensional data into a meaningful re- 

duced representation and have been consistently playing a fundamental role in the study of intrinsic 

dimensionality estimation and the design of an intelligent expert system towards real-world applications. 

From the perspective of manifold learning, locality preserving projections is a classical and commonly 

used dimensionality reduction method and it essentially learns the low-dimensional embedding under 

the constraint of preserving the local geometry of data. However, since it determines the neighborhood 

relationships in the original feature space that probably contains noisy and irrelevant features, the de- 

rived similarity between the neighbors are unreliable and the corresponding local data manifold tends 

to be error-prone, which inevitably leads to degraded performance for subsequent data analyses. Hence, 

how to accurately identify the true neighbor relationships for each sample remains crucial to the ro- 

bustness improvement. In this work, we propose a novel approach, termed locality adaptive preserving 

projections (LAPP), to adaptively determine the neighbors and their relationships in the optimal subspace 

rather than in the original space. Specifically, due to the absence of prior knowledge of local proper- 

ties of the underlying manifold, LAPP adopts a coarse-to-fine strategy to iteratively update the projected 

low-dimensional subspace and optimize the identification of the local structure of the data. Moreover, an 

iterative algorithm with fast convergence is utilized to solve the transformation matrix for explicit out- 

of-sample extension. Besides, LAPP is easy to implement and its key idea can be potentially extended to 

other methods for neighbor-finding and similarity measurement. To evaluate the performance of LAPP, we 

conduct comparative experiments on numerous synthetic and real-world datasets. Experimental results 

show that seeking the local structure in the original feature space misleads the selection of neighbors and 

the calculation of similarity and that the proposed method helps alleviate the negative effect of noisy and 

irrelevant features, which demonstrates its effectiveness. Besides, this study has the potential to enlighten 

relevant studies to consider the problem of optimizing the neighborhood relationships. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

For a variety of research fields and real-world applications that

ange from face recognition ( He, Yan, Hu, Niyogi & Zhang, 2005 )

nd smoke detection ( Yuan, Xia, Shi, Li & Li, 2017 ) to activity recog-

ition ( Wang, Chen, Yang, Zhao & Chang, 2016 ) and finance man-

gement ( Tayalı & Tolun, 2018 ; Zhong & Enke, 2017 ), we are often
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onfronted with high-dimensional data and required to develop

owerful analysis methods for the discovery of knowledge and the

esign of a decision support system, especially in the era of big

ata where we are faced with a massive amount of data that are

haracterized by complexity, variety, and high-dimensionality. Con-

equently, the prediction and evaluation models directly trained

n such data not only suffer immensely from the curse of di-

ensionality, but also larger computational loads. Even worse, if

he original feature space fails to reflect the intrinsic structure of

he data, it leads to degraded performance and lowers the confi-

ence of a decision system to a large extent ( Qiao, Chen & Tan,

010 ). For example, in terms of a face recognition system, we of-

en organize a w 

∗h face image into a w 

∗h dimensional vector for
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appearance-based techniques, which is too large for robust face

recognition ( Bhowmik, Saha, Singha, Bhattacharjee & Dutta, 2019 ).

In the task of building an intelligent expert system for daily stock

market analyses, researchers usually collect a wide range of finan-

cial and economic features to maximize the stock market return.

However, some of these features are irrelevant to the task and

even redundant to each other ( Zhong & Enke, 2017 ). Undoubtedly,

this poses a serious challenge to the exploration of intrinsic di-

mensionality of the data, the efficiency of many machine learning

models, and the generalization ability of a system for real-world

scenarios. Accordingly, one common way to mitigate this prob-

lem is to utilize an effective and efficient dimensionality reduc-

tion method to reduce data dimensionality ( Bhowmik et al., 2019 ;

van der Maaten, Postma & Herik, 2009 ). 

As an important preprocessing technique in data analysis, di-

mensionality reduction techniques basically work by transforming

the data of high-dimensionality into a meaningful low-dimensional

representation in a linear or non-linear way and they have been

consistently playing a fundamental and important role in better

revealing the intrinsic structure of the data and greatly facili-

tating the subsequent tasks ( Zhao, Wang & Nie, 2018 ; Zhong &

Enke, 2017 ). Particularly, dimensionality reduction contributes to

the tasks of classification, regression, clustering, visualization, and

data compression in a variety of applications such as face recog-

nition, information retrieval, and disease diagnosis ( Becht et al.,

2019 ; van der Maaten & Hinton, 2008 ). For example, principle

component analysis seeks a group of irrelevant variables by dis-

carding redundant information and it helps reduce noise and im-

prove the performance of a classifier. The key assumption behind

dimensionality reduction is that the original feature space contains

irrelevant features and some features are redundant to each other,

we can then find a group of new features to represent the orig-

inal ones ( Tenenbaum, De Silva & Langford, 20 0 0 ). Therefore, the

task of dimensionality reduction is to find a reduced representation

with the intrinsic dimensionality of the data by deriving an appro-

priately linear/non-linear transformation function under the care-

fully devised constraint conditions ( van der Maaten et al., 2009 ;

Zhao et al., 2018 ). 

According to the requirement for the availability of data la-

bels, existing dimensionality reduction techniques can be broadly

categorized into three groups: supervised dimensionality reduc-

tion methods, unsupervised dimensionality reduction methods,

and semi-supervised dimensionality reduction methods. Principle

component analysis (PCA) is the most widely used unsupervised

dimensionality reduction method and it attempts to seek a sub-

space by maximizing the variance of the projected data ( Martínez

& Kak, 2001 ). In contrast to PCA, linear discriminant analysis (LDA)

utilizes the label information and it seeks the transformation ma-

trix by simultaneously maximizing the rank of between-class scat-

ter matrix and minimizing the rank of within-class scatter ma-

trix in order to pull samples with the same label close and sep-

arate samples with different labels far from each other ( Martínez

& Kak, 2001 ). Though simple and intuitive, PCA and LDA are widely

used in data reprocessing and perform well in a wealth of ap-

plications such as face recognition, seismic series analysis, visual-

ization, and clustering ( Belhumeur, Hespanha & Kriegman, 1997 ).

However, both PCA and LDA only utilize the global structure of the

data and assume there does not exist the local properties of the

data, which limits their performance in handling complex cases

when the above condition is not satisfied ( Belhumeur et al., 1997 ;

Martínez & Kak, 2001 ). 

In contrast, another line of research is to explore the local

properties of the data. From the perspective of manifold learn-

ing, dimensionality reduction essentially aims to find the low-

dimensional manifold that is embedded into a high-dimensional

space and this embedding keeps the data geometric characteristics
s much as possible ( Garcia-Vega & Castellanos-Dominguez, 2019 ;

enenbaum et al., 20 0 0 ). Accordingly, researchers have investigated

he manifold learning and its application in dimensionality reduc-

ion. Isometric mapping (ISOMAP) ( Tenenbaum et al., 20 0 0 ), locally

inear embedding (LLE) ( Roweis & Saul, 20 0 0 ), and Laplacian eigen-

aps (LE) ( He & Niyogi, 2004 ) are three representative local meth-

ds that find a lower-dimensional embedding of the data lying

n or around a high-dimensional non-linear manifold. They have

chieved satisfactory performance on multiple application domains

 Krstanovi ́c et al., 2016 ; van der Maaten et al., 2009 ), however, they

o not provide explicit mapping between the original data and the

educed representation. That is, researchers are generally required

o recompute the projection vectors in coping with out-of-sample

xtension, which greatly limits their flexibility in use and leads to

igh time costs in processing streaming data. To allow for the effi-

ient embedding of new datapoints, researchers have investigated

he linearized version of several non-linear dimensionality reduc-

ion methods. For example, He, Cai, Yan and Zhang (2005) pro-

osed the neighborhood preserving embedding (NPE) to linearly

pproximate LLE. Locality preserving projections (LPP) is a linear

pproximation to LE ( He & Niyogi, 2004 ). Specifically, LPP is a com-

only used and well-performing approach that attempts to obtain

 linear transformation matrix by preserving the local neighbor-

ood relationships of the data. LPP has a remarkable advantage in

imensionality reduction and returns an explicit mapping for serv-

ng the out-of-sample extension. Compared with most of existing

anifold learning methods, LPP not only preserves the local prop-

rties of the data, but also returns an explicit transformation ma-

rix. Particularly, the two components of LPP include the construc-

ion of neighbor graph and the measurement of similarity between

eighbors, both of which largely determine its performance. In ad-

ition, several variants of LPP have been proposed and experimen-

ally validated, such as the discriminant locality preserving projec-

ions (DLPP) that makes use of label information ( Yu, Teng & Liu,

006 ) and the null space discriminant locality preserving projec-

ions (NDLPP) that is targeted at the small sample size problem of

LPP ( Yang, Gong, Gu, Li & Liang, 2008 ; Yu et al., 2006 ). 

Although LPP and its variants have been successfully applied for

eal-world applications, it takes the risk of choosing false near-

st neighbors and incorrectly calculating the similarity between

eighbors and the derived local manifold tends to be error-prone,

hich inevitably leads to degraded performance for subsequent

ata analyses. This is mainly because LPP measures the similar-

ty between neighbors in the original feature space where there

xist noisy and irrelevant features ( Wang et al., 2016 ; Zhao et al.,

018 ). Obviously, the obtained neighbor relationships in the opti-

al subspace are more reliable than the ones in the original fea-

ure space and can better reflect the truth. Therefore, how to max-

mally mitigate the effect of noisy factors and accurately identify

he true neighbor relationships for each sample remains crucial.

owever, we have no prior knowledge of the optimal subspace,

hich poses a challenge to the determination of the true similar-

ty between neighbors and the robustness improvement of man-

fold learning-based methods. Accordingly, in this study, we pro-

ose a novel approach, termed locality adaptive preserving projec-

ions (LAPP) to adaptively determine the neighborhood relation-

hips in the optimal subspace rather than in the original feature

pace. Specifically, due to the absence of prior knowledge of local

roperties of the underlying manifold, LAPP adopts a coarse-to-fine

trategy to handle the chicken and egg situation. Moreover, an iter-

tive algorithm with fast convergence is utilized to solve the con-

trained optimization problem for explicit out-of-sample extension.

his enables us to better reveal the underlying manifold and obtain

orresponding robust embeddings. Particularly, the main contribu-

ions of this study are as follows. Frist, we analyze the manifold

earning-based dimensionality reduction techniques, especially the
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ommonly used LPP and point out that seeking the local structure

n original feature space is error-prone in terms of neighbor-finding

nd similarity measurement. This potentially motivates researchers

o pay special attention to such a problem for other dimension-

lity reduction methods. Second, we propose a locality adaptive

reserving projections approach to optimizing the measurement

f neighbor relationships. The proposed method iteratively updates

he projected low-dimensional subspace and optimizes the identi-

cation of the local structure of the data. Besides, its key idea can

e potentially extended to other similar methods. Third, we imple-

ent and evaluate the proposed approach on numerous synthetic

nd real-world datasets. Extensive experimental results show that

onstructing the neighbor graph in the original feature space suf-

ers from lower performance, which demonstrates the effectiveness

f the proposed method. 

The reminder of this study is organized as follows.

ection 2 briefly reviews related work on dimensionality re-

uction techniques by introducing four commonly used methods.

e detail the proposed locality adaptive preserving projections

ethod and its motivation in Section 3 . Section 4 gives the experi-

ental setup and results on both synthetic and real-world datasets

nd presents corresponding analyses. The last section concludes

his study with a brief summary and discusses insightful future

esearch directions. 

. Related work 

Over the past few decades, a large number of dimensional-

ty reduction methods have been proposed and used in diverse

reas (e.g., decision support systems, face recognition, and data

isualization), and we can categorize them from different per-

pectives. According to whether the mapping function between

he high-dimensional space and the reduced feature space is lin-

ar, we can group dimensionality reduction techniques into linear

ethods (e.g., PCA and LDA) and non-linear methods (e.g., LLE,

SOMAP, and LE) ( Martínez & Kak, 2001 ; Roweis & Saul, 2000 ;

enenbaum et al., 20 0 0 ). Compared with traditional linear meth-

ds, non-linear methods generally have an advantage in coping

ith the data that lie on or around a complex non-linear mani-

old ( Weinberger, Sha & Saul, 2004 ). According to the availability

f the supervised information of the data, existing dimensionality

eduction techniques can be mainly divided into supervised, un-

upervised, and semi-supervised methods ( Passalis & Tefas, 2017 ).

or example, LDA belongs to the supervised methods and PCA is

 representative of unsupervised methods. Semi-supervised meth-

ds deal with the case that only some of the data have super-

ised information. From the perspective of optimization, we cate-

orize them into convex (e.g., PCA, LLE, and LE) and non-convex

imensionality reduction methods (e.g., locally linear coordina-

ion, autoencoder) according to whether the corresponding ob-

ective function is convex ( Hinton & Salakhutdinov, 2006 ; The &

oweis, 2002 ). Specifically, convex techniques ensure the global

ptimum, while the non-convex techniques get easily trapped into

ocal optima. Besides, according to which information one dimen-

ionality reduction technique aims to preserve, we divide exist-

ng dimensionality reduction techniques into global methods and

ocal methods ( van der Maaten et al., 2009 ). For example, PCA,

DA, and autoencoder belong to global methods that try to keep

he global properties of the data, whereas LLE, LE, and LPP are lo-

al methods that preserve the underlying manifold structure ( He

 Niyogi, 2004 ; Tenenbaum et al., 20 0 0 ). For dimensionality re-

uction methods, the key is how to measure the manifold and

reserve the property in transforming the high-dimensional data

nto the reduced representation Cai, He, Han and Zhang (2006) .

or example, Passalis and Tefas (2017) analyzed the advantage

f similarity metric over distance metric in preserving the man-
fold structure and used the target similarity matrix for projec-

ion learning. Garcia-Vega and Castellanos-Dominguez (2019) used

he Mercer kernel to compute similarity and proposed a kernel-

ased cost function to minimize the discrepancy between the high-

imensional and reduced representations. A major disadvantage

f such methods is that they compute similarities in the origi-

al feature space that have noisy and irrelevant features. Accord-

ngly, Pang, Zhou and Nie (2019) modeled the similarity in the low-

imensional space and optimized a rational objective function to

earn the projection matrix and class-wise neighborhood similar-

ty. Yang, Wang and Zuo (2012) proposed to construct a neighbors-

ased local probability model in the subspace and then presented

he fast neighborhood component analysis for metric learning. The

nhanced performance inspires us to maximally mitigate the effect

f noisy factors. 

Besides the further endeavor on developing new algorithms,

here are significant studies that explore the underlying connec-

ions among existing dimensionality reduction methods. For ex-

mple, Yan et al. (2007) utilized the graph embedding to unify

CA , LDA , ISOMAP, LLE, LE, and LPP into a general framework

y defining corresponding similarity matrix and constraint ma-

rix, where the former encodes the statistical or geometric prop-

rties of the data and the latter represents scale normalization or

 penalty graph. Furthermore, they proposed a novel algorithm

alled marginal fisher analysis within the framework. To better

ope with partially labeled problem, Song, Nie, Zhang and Xi-

ng (2008) investigated the semi-supervised dimensionality reduc-

ion techniques and proposed a framework that could unify PCA,

DA, LPP, and maximum margin criterion (MMC). To mitigate the

roblems and limitations of using an unbounded distance metric to

xpress the objective function, Passalis and Tefas (2017) proposed

 similarity-based dimensionality reduction framework. Within the

ramework, they discussed how to obtain the target similarity ma-

rix and presented a method on how to clone an existing di-

ensionality reduction method. This enables the explicit out-of-

ample extension. Herein, to have a general idea of different cat-

gories of dimensionality reduction techniques and better under-

tand their relationships with the proposed approach, we intro-

uce four representative algorithms that belong to linear/non-

inear and global/local methods. Notably, to gain deeper insights

nto other techniques, there are excellent literature reviews on di-

ensionality reduction for a centralized outlook into a specific

opic, such as metric learning ( Weinberger, Blitzer & Saul, 2006 ),

anifold learning, and non-linear dimensionality reduction tech-

iques ( van der Maaten et al., 2009 ). Next, we detail four dimen-

ionality reduction methods, including PCA, LLE, LE, and LPP. By de-

ault, we use bold lower-case and upper-case front to denote vec-

ors and matrices, respectively, and regular fonts for scalars. 

.1. Principle component analysis 

As one of the commonly used preprocessing techniques, PCA

s an unsupervised linear dimensionality reduction approach that

ransforms the high-dimensional data into a new subspace of

ower dimensionality ( Martínez & Kak, 2001 ). Specifically, given a

raining dataset X = [x 1 , x 2 , …, x N ] �R 

m ×N with N data points that

re in a m -dimensional feature space, PCA aims to find a linear

apping A to derive a low-dimensional representation of the data

hile maximizing the amount of variance. In mathematical terms,

he objective function of PCA is formalized as: 
 

arg max 
A 

( A 

T cov (X ) A ) 

s.t. A 

T A = I 
(1) 

here A 

T is the transpose of A , cov( X ) is the covariance matrix of

he data X , and the constraint condition is to avoid trivial solutions.
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After rigorous math transformations, the optimization problem

of Eq. (1) reduces to an eigenproblem, 

cov (X ) A = λA (2)

Obviously, the solutions A are the eigenvectors associated with

the d principle eigenvalues of cov( X ). Afterwards, we compute the

low-dimensional representation Y of X by performing linear map-

ping with A �R 

m ×d , i.e., Y = A 

T X . PCA has advantages of simplic-

ity, easy explanation, optimal reconstruction, and explicit out-of-

sample extension, but it has limited power in handling data lying

on or around a non-linear manifold such as Swiss roll data. Be-

sides, PCA pays much attention to large pairwise distances rather

than the small pairwise distances. 

2.2. Locally linear embedding 

The key idea of LLE is that the geometry of local neighbors

should be maintained in the reduced feature space, that is, each

data point can be linearly represented by its neighbors in the high

dimensional space, and then exploit the learned weights to re-

construct each projected data point in the low-dimensional space

( Roweis & Saul, 20 0 0 ). Specifically, LLE first represents a datapoint

x i as a linear combination of its k nearest neighbors x ij with cor-

responding weight vector w i in the original feature space using

Eq. (3) , 

arg min 

w 

∑ 

i 

∥∥∥∥∥x i −
k ∑ 

j=1 

w i j x i j 

∥∥∥∥∥
2 

(3)

where w ij represents the weight between x i and its x j and k denotes

the number of neighbors of interest. 

According to the local linearity assumption, w i is invariant to

rescaling, translation, and rotation, and then LLE fixes w i in the

embedded low-dimensional data representation. Thus, LLE uses w i 

to reconstruct the reduced representation y i of x i with its neigh-

bors y ij and solves the following objective function to obtain the

d -dimensional representation Y �R 

d×N , ⎧ ⎪ ⎨ 

⎪ ⎩ 

min 

∑ 

i 

∥∥∥∥y i −
k ∑ 

j=1 

w i j y i j 

∥∥∥∥
2 

s.t. || y (n ) | | 2 = 1 , ∀ n 

(4)

where y ij is the jth neighbor of y i and y ( n ) is the nth column of Y . The

constraint condition is to avoid the trivial solution Y = 0 . Obviously,

there is no explicit mapping between X and Y that we can use for

out-of-sample extension. 

2.3. Laplacian eigenmaps 

Similar to LLE, LE also preserves the local properties of the data

( He & Niyogi, 2004 ). The objective of LLE is to minimize the dis-

tances between a data point and its k nearest neighbors in the re-

duced feature space, 

min ϕ(Y ) = min 

∑ 

i, j 

∥∥y i − y j 
∥∥2 

s i j (5)

where y i is the low-dimensional representation of x i and s ij de-

notes the similarity between x i and x j . We can define s ij in a su-

pervised or unsupervised way. 

For the supervised setting, given a dataset with c classes, define

s i j = 

{
d( x i , x j ) , if( x i and x j ) ∈ thesameclass 
0 , otherwise 

(6)
here d ( x i , x j ) represents the weight of the edge between x i and

 j . We can calculate the weight with heat kernel or cosine func-

ion, 

 i j = e −
−|| x i −x j | | 2 

2 δ2 , or d i j = cos ( x i , x j ) (7)

For the unsupervised case, define 

 i j = 

{
d( x i , x j ) , if x i ∈ N k ( x j ) or x i ∈ N k ( x j ) 
0 , otherwise 

(8)

here N k ( x j ) denotes the set of k nearest neighbors of x j . 

Afterwards, we can obtain a similarity matrix S �R 

N×N whose ( i,

 ) entry is s ij . After rigorous math transformations, the optimization

roblem Eq. (5) reduces to 

 

min 

∑ 

i, j 

∥∥y i − y j 
∥∥2 

s i j = min 

Y 
2 Y 

T LY 

s.t. Y 

T DY = I , D = 

∑ 

j S i j 

(9)

here L = D - S is the Laplacian matrix. We obtain Y by solving

he following generalized eigenvalue problem ( Eq. (10) ), 

 v = λD v (10)

The solutions are the eigenvectors that are associated with the

 smallest non-zero eigenvalues. One drawback of LE is that there

s no explicit mapping to directly transform new out-of-samples

nto the low-dimensional data representation. 

.4. Locality preserving projections 

LPP is essentially a linearization procedure of LE and it at-

empts to obtain a transformation matrix A = [ a 1 , a 2 , …, a d ] �R 

m ×d 

hat best preserves the local properties of the reduced data ( He &

iyogi, 2004 ). Each column a i ( i = 1, …, d ) of A is a basis vector

f the low-dimensional space. The reduced data representation y i 
R 

d×1 of x i is y i = A 

T x i , and the objective function of LPP is to

inimize the constrained optimization problem ( Eq. (11) ), 

 

arg min 

a 

∑ 

i, j 

∥∥a T x i − a T x j 

∥∥2 
s i j 

s.t. a T XD X 

T a = I 
(11)

hich means if x i and x j are close to each other, y i and y j should

e close. After rigorous math transformations, Eq. (11) reduces to a

eneralized eigenvalue problem, 

L X 

T A = �XD X 

T A (12)

here L is the Laplacian matrix, D is the diagonal matrix, and � is

 diagonal matrix with eigenvalues on the diagonal. 

Compared with LE, LPP provides A to explicitly project new data

oints to its reduced representation of low-dimensionality. How-

ver, LPP measures the pairwise similarity between neighbors in

he original feature space that contains noisy and irrelevant fea-

ures, which misleads the selection of neighbors and the mea-

urement of neighborhood similarity and further leads to degraded

erformance. In the next section, we present how to optimize the

erivation of subspace and the selection of neighbors without hav-

ng prior knowledge of the local properties. 

. Locality adaptive preserving projections 

As we discussed above, the selection of nearest neighbors and

he measurement of neighborhood relationships largely determines

he performance of locality preserving projections. Particularly,

ow to largely reduce the effect of unimportant factors and ac-

urately seek the neighbors in the optimal subspace remains criti-
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al. Ideally, if we have prior knowledge of the noisy and irrelevant

eatures of the data, we get the true pairwise distances between

eighbors and derive the optimal feature space. On the contrary, if

e know the optimal subspace, we basically obtain the true neigh-

orhood relationships of each data point and further mitigate the

ffect of noisy features. Unfortunately, we have no prior knowl-

dge. Hence, how to adaptively determine the optimal subspace is

he main focus of this study. 

Naturally, the key idea of Expectation Maximization (EM) de-

ivers a meaningful solution to the above dilemma. Accordingly,

e are required to provide a good initial value. Since the locality

reserving projections has the ability to extract meaningful rep-

esentation of reduced dimensionality from the high-dimensional

ata and to preserve the manifold structure, we tentatively use

he nearest neighbors that are measured in the original feature

pace as initial values and adopt an iterative process to optimize

he transformation matrix A . Herein, we propose the locality adap-

ive preserving projections (LAPP) method towards better preserv-

ng the local properties of the data. Specifically, we first calculate

he weight between any two points x i and x j of X using (7) . We

hen calculate the similarity matrix S , diagonal matrix D as well

s Laplacian matrix L . Afterward, we solve a generalized eigen-

alue problem and get a transformation matrix A . Subsequently,

e conduct a step to refine the measurement of neighborhood re-

ationships. With the returned A , we project X into a new sub-

pace X 0 = A 

T X , which essentially functions as a candidate of the

ptimal subspace. Then, we calculate the weight between any two

oints of X 0 and select the nearest neighbors of each reduced data

oint. Afterwards, we get a new transformation matrix A . Con-

inue with the above procedure until a specific condition is met,

uch as the difference of A between two consecutive iterations less

han a threshold, the maximum number of iterations, and the time

udget. Algorithm 1 presents the pseudo-code of the proposed

APP, where two iteration stop conditions are used. Line 5 con-

rols the maximum number of iterations and line 11 controls the

recision. 

With A , we can transform the original training set and new out-

f-sample datapoints into their reduced representation for subse-

uent analysis. For example, in the application of face recognition,

e project the original face images into a new reduced subspace,

here we train a classifier on the mapped training set and further

nfer the label of the mapped test samples. Although, as expected,

APP suffers from a high time complexity, it converges after less

han twenty iterations on average, which is easily affordable for

any real-world applications. Besides, LAPP is easy to implement

or practical applications. 

e  

Algorithm 1 Pseudo-code of locality adaptive preserving pr

Input: X = [x 1 , x 2 , …, x N ] �R 
m ×N , the final dimension d

Output: transformation matrix A �R m ×d 

1. calculate the similarity s ( x i , x j ) between x i and x j of 

2. calculate S, D , and L according to s ( x i , x j ) 

3. solve the generalized eigenvalue problem (12) and ob

4. iteration = 0 //counter 

5. while iteration < T 

6. obtain the transformed data X 0 = A T X 

7. A 0 = A //save A 

8. measure the similarity s ( x i , x j ) within X 0 
9. calculate S, D , and L 

10. solve a generalized eigenvalue problem to get

X 0 LX T 0 A = �X 0 D X 0 
T A 

11. if diff(A, A 0 ) < δ //differences of two consecut

12. A = A 0 , break ; 

13. end if 

14. iteration = iteration + 1 

15. end while 

16. return A 
. Experimental results and analysis 

To evaluate the effectiveness of the proposed method, we con-

uct extensive experiments on two synthetic Swiss roll datasets,

hree face recognition benchmark datasets, including the Yale face

atabase (YALE), Olivetti research laboratory database (ORL), and

xtended Yale Face Database B (E_YALE), as well as one hand-

ritten digit recognition dataset MNIST. We compare LAPP with

ther four well-performing dimensionality reduction methods, in-

luding two global methods (PCA and LDA) and two local methods

NPE and LPP). In constructing the affinity matrix, if the class label

s available, we connect two points of the same class and mea-

ure the similarity. For the Swiss roll datasets that lie in a three-

imensional space, we apply the above dimensionality reduction

ethods to transform the data into a two-dimensional space and

lot corresponding data distributions. For the task on real-world

atasets, we use dimensionality reduction methods to transform

he data into reduced representations and then utilize the near-

st neighbor classifier (NN) to associate the test sample with its

abels. Accuracy is used as the evaluation metric. Besides, for the

aseline method, classification is performed in the original feature

pace without conducting dimensionality reduction. 

.1. Results on synthesis datasets 

We first evaluate the performance of LAPP on two Swiss roll

atasets. In this study, the first dataset consists of 10 0 0 data points

nd the second contains 20 0 0 data points. We generate the three

oordinates ( x, y, z ) of Swiss roll according to the following func-

ions, 

x = t ∗cos( t ) , y = h, z = t ∗ sin (t) 
s.t.t ∈ [ 3 π/ 2 , 9 π/ 2 ] , h ∈ [ 0 , 41 ] 

(13) 

After obtaining the transformation matrix using the dimen-

ionality reduction methods, we project the artificially generated

hree-dimensional data into a new two-dimensional space. Fig. 1

resents the results of PCA, LDA, NPE, LPP, and LAPP on 10 0 0 data

oints, and Fig. 2 is associated with the results of 20 0 0 data points.

rom Figs. 1 and 2 , we observe that LAPP better preserves the lo-

al structure of the data. Compared to the three-dimensional Swiss

oll, the results of LAPP also show a two-dimensional Swiss roll.

hat is, LAPP preserves both the local structure and the global dis-

ribution of the data. Besides, we observe that LPP performs better

han NPE, and that NPE, LPP, and LAPP perform better than PCA. A

ossible explanation is that PCA aims to preserve the global prop-

rty of the data and fails to discover the local structure that exists
ojections. 

 , threshold δ, maximum number of iterations T 

X using (6) 

tain A 

 A : 

ive iterations 
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Fig. 1. Results of PCA, NPE, LPP, and LAPP on a Swiss roll dataset that consists of 10 0 0 points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Error rates (%) with l ( = 2, 4, 6, 8) training images per individual on the YALE 

dataset. The dimension that results in the best error rate of each method is 

shown in the parentheses. 

2 Train 4 Train 6 Train 8 Train 

Baseline 56.56 47.35 41.31 36.36 

PCA 56.56 (29) 47.35 (60) 40.83 (32) 35.91 (30) 

LDA 70.43 (12) 65.07 (14) 61.07 (14) 54.98 (14) 

NPE 77.29 (14) 71.18 (23) 67.33 (26) 65.47 (14) 

LPP 43.60 (14) 28.80 (14) 22.83 (20) 20.84 (21) 

LAPP 43.29 (14) 28.42 (15) 22.83 (23) 20.58 (23) 
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in complex non-liner data and NPE has a difficulty in coping with

the manifolds that contain holes. 

4.2. Results on YALE database 

The YALE database consists of 165 images of 15 subjects

( Belhumeur et al., 1997 ). For each individual, there are 11 images

and one per different illuminations or facial expressions: happy,

sleepy, surprised, sad, wink, normal, w/glasses, w/no glasses,

center-light, left-light, and right-light. These images are manually

cropped to 32 ×32 pixels and converted to grayscale images. Ac-

cordingly, Fig. 3 presents exemplar face images. 

In our experiment, we randomly select l ( = 2, 4, 6, 8) images per

individual to form the training set and take the remaining images

as the test set. For each l , we repeat the experiments over fifty

random splits of the dataset and report the average results. To bet-

ter explore the intrinsic dimensionality, we conduct experiments

within a wide range of projected dimensions and set the maxi-

mal projected dimension to be 100. Note that, because LDA has

at most c -1 nonzero eigenvalues ( c is the number of individuals),

an upper bound on the reduced dimensionality is c −1. The train-

ing samples are used to learn the projective functions and nearest

neighbor (NN) is used as the classifier. For the baseline method,

the recognition is performed in the original feature space with-

out any dimensionality reduction. Table 1 presents the lowest error

rates and corresponding dimension that are returned by PCA, LDA,

NPE, LPP, and LAPP, respectively, for each training case with l ( =
2, 4, 6, 8). The second row “Baseline” denotes the results without

using dimensionality reduction. The best values in terms of error

rates are highlighted in bold. 
We observe in Table 1 that there exists a general trend that the

rror rates decrease with the increase of the number of training

amples. This indicates that a larger size of training set contributes

o the improvement of recognition performance. Furthermore, we

ee that LAPP outperforms all its competitors and that LPP per-

orms better than PCA, LDA, and NPE. For example, in the case of

 = 2, PCA achieves an error rate of 56.56%, LDA has an error rate

f 70.43%, NPE has an error rate of 77.29%, while the error rates of

PP and LAPP are 43.60% and 43.39%, respectively; for l = 8, LAPP

chieves an error rate of 20.58%, which is lower than 25.91% of

CA, 54.98% of LDA, 65.47% of NPE, and 20.84% of LPP. 

Besides, Fig. 4 plots the recognition error rates versus different

educed dimensions for PCA, LDA, NPE, LPP, and LAPP. The pro-

ected dimension varies from 5 to 100. The X-axis represents the

imension of reduced data representation and the Y-axis denotes

he classification error rates of each method. From Fig. 4 , we ob-

erve that the minimal error rate of LAPP is smaller than that of

CA , LDA , NPE, and LPP. We also observe that the error rates of
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Fig. 2. Results of PCA, NPE, LPP, and LAPP on a Swiss roll dataset that consists of 20 0 0 points. 

Fig. 3. Exemplar face images of YALE. 

e  

c  

a  

i  

i  

s  

o  

i  

f  

h

4

 

g  

(  

d  

f  

i  

i  

d  

p

 

p  

a  

r  

t  

i  

s  

L  

b  

h  

w

 

e  

c  
ach method first decrease and then increase along with the in-

rease of dimension. The phenomenon is probably because we first

pproach the intrinsic dimensionality and then stray from it. This

ndicates that the inflection point potentially corresponds to the

ntrinsic dimensionality of the data. Besides, from Fig. 4 , we ob-

erve that in the case of a small number of training samples, LAPP

btains slightly better recognition rates than its competitors, while

n the case of a large number of samples, LAPP performs quite dif-

erently from other methods and has a steep inflection point that

elps better study the intrinsic dimensionality of the data. 

.3. Results on ORL database 

The Olivetti Research Laboratory (ORL) database contains 400

rayscale face images of 40 individuals (10 samples per individual)

 Samaria & Harter, 1994 ). The images were taken at different con-

itions: different times, lighting, facial details (with/out glass), and

acial expressions (open/closed eyes, smiling/not smiling), and all
mages were taken against a dark homogeneous background. These

mages are manually cropped to 32 × 32 pixels and form a 1024-

imensional feature vector. To have a general idea of ORL, Fig. 5

resents exemplar face images. 

In this experiment, we randomly select l ( = 2, 4, 6, 8) images

er individual to form the training set and take the remaining im-

ges as the test set. For each l , we repeat the experiments over 50

andom splits of the dataset and report the average accuracy. The

raining samples are used to learn the projective functions and NN

s used as the classifier. We give the best error rates and corre-

ponding dimension that are returned by PCA , LDA , NPE, LPP, and

APP for each training case with l ( = 2, 4, 6, 8) in Table 2 . The

est values achieved by these methods in terms of error rates are

ighlighted in bold. The second row “Baseline” presents the results

ithout using dimensionality reduction. 

Similar to the case of YALE, we observe in Table 2 that there

xists a general trend that the error rates decrease with the in-

rease of the number of training samples. Furthermore, we see
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Fig. 4. Error rates versus dimensions of PCA, LDA, NPE, LPP, LAPP, and Baseline method on YALE. 

Fig. 5. Exemplar face images of ORL. 

Table 2 

Error rates (%) with l ( = 2, 4, 6, 8) training images per individual on the 

ORL dataset. The dimension that results in the best error rate for each 

method is shown in the parentheses. 

2 Train 4 Train 6 Train 8 Train 

Baseline 33.08 17.86 11.06 8.25 

PCA 33.08 (80) 18.98 (100) 11.69 (70) 8.75 (75) 

LDA 65.59 (38) 57.90 (37) 62.81 (36) 59.25 (39) 

NPE 92.96 (38) 93.00 (75) 90.03 (90) 90.69 (85) 

LPP 23.08 (39) 11.38 (39) 7.16 (39) 5.56 (39) 

LAPP 22.91 (39) 11.38 (39) 7.00 (40) 5.19 (40) 
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that LAPP outperforms its competitors. For example, for the case

of l = 2, LAPP achieves an error rate of 22.91%, which is lower

than 33.08% of Baseline, 33.08% of PCA, 65.59% of LDA, 92.96% of

NPE, and 23.08% of LPP; for the case of l = 8, LAPP achieves an er-
or rate of 5.19%, compared to the 8.25% of Baseline, 8.75% of PCA,

9.25% of LDA, 90.69% of NPE, and 5.56% of LPP. We also observe

hat the inappropriate choice of dimensionality reduction methods

an degrade the classification performance. For example, for l = 4,

aseline returns an error rate of 17.86%, which is smaller than the

8.98% of PCA, 57.90% of LDA, 93.00% of NPE. 

Besides, Fig. 6 plots the recognition error rates versus different

rojected dimensions for PCA , LDA , NPE, LPP, and LAPP. The pro-

ected dimension varies from 5 to 100. The X-axis represents the

imension of reduced data representation and the Y-axis denotes

he classification error rates of each method. From Fig. 6 , we ob-

erve that LAPP obtains the minimal error rate and that the error

ates of each method first decrease and then increase along with

he increase of dimension. This indicates that we first approach the

ntrinsic dimensionality and then stray from it. 
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Fig. 6. Error rates versus dimensions of PCA, LDA, NPE, LPP, LAPP, and Baseline method on ORL. 

Fig. 7. Exemplar face images of E_YALE. 
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Table 3 

Error rates (%) with l ( = 5, 10, 15, 20) training images per individual on the 

E_YALE dataset. The dimension that results in the best error rate for each 

algorithm is shown in the parentheses. 

5 Train 10 Train 15 Train 20 Train 

Baseline 63.60 46.40 36.56 30.40 

PCA 66.10 (100) 52.24 (100) 44.07 (100) 39.04 (100) 

LDA 67.16 (37) 57.06 (37) 54.78 (37) 55.87 (37) 

NPE 45.68 (95) 21.35 (100) 14.33 (100) 12.50 (100) 

LPP 27.48 (37) 16.09 (37) 12.98 (37) 12.96 (37) 

LAPP 24.61 (38) 13.67 (75) 9.68 (75) 9.65 (75) 

L  

b  

h  

r

.4. Results on E_YALE database 

The extended Yale Face Database B (E_YALE) consists of 16,128

mages of 28 individuals that are collected under 9 poses and

4 illumination conditions ( Lee, Ho & Kriegman, 2005 ). Compared

ith YALE, this poses a great challenge to face recognition. These

mages are manually cropped to 32 ×32 pixels and form a 1024-

imensional feature vector. To have a general idea of E_YALE, Fig. 7

resents exemplar face images. 

In this experiment, we randomly select l ( = 5, 10, 15, 20) im-

ges per individual to form the training set and take the remain-

ng images as the test set. For each l , we repeat the experiments

ver 50 random splits of the dataset and report the average accu-

acy. The training samples are used to learn the projective func-

ions and NN is used as the classifier. We give the best error rate

nd corresponding dimension returned by PCA, LDA, NPE, LPP, and
APP for each training case with l ( = 5, 10, 15, 20) in Table 3 . The

est values achieved by these methods in terms of error rates are

ighlighted in bold. Also, the second row “Baseline” presents the

esults without using dimensionality reduction. 
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Fig. 8. Error rates versus dimensions of PCA, LDA, NPE, LPP, LAPP, and Baseline method on E_YALE. 
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According to Table 3 , we also observe that there exists a general

trend that the error rates decrease with the increase of the num-

ber of training samples. We also observe that LAPP outperforms its

competitors. For example, for the case of l = 5, LAPP achieves an

error rate of 24.61%, compared to the 63.60% of Baseline, 66.10%

of PCA, 67.16% of LDA, 45.68% of NPE, and 27.48% of LPP; for the

case of l = 20, compared to the 30.40% of Baseline, 39.04% of PCA,

55.87% of LDA, 12.50% of NPE, and 12.96% of LPP, LAPP achieves an

error rate of 9.65%. 

In addition, Fig. 8 plots the recognition error rates versus dif-

ferent projected dimensions for PCA, LDA, NPE, LPP, and LAPP. The

projected dimension varies from 5 to 100. The X-axis represents

the dimension of reduced data representation and the Y-axis de-

notes the classification error rates of each method. From Fig. 8 , we

observe that LAPP obtains the minimal error rate. Besides, we ob-

serve LAPP has a steep inflection point that probably corresponds

to the intrinsic dimensionality. 

4.5. Results on MNIST 

We further conduct comparative experiments on the hand-

written digit recognition dataset, i.e., MNIST. These images are

manually cropped to 28 × 28 pixels and each is represented by a

784-dimensional feature vector. There are ten different digits (0 to

9), and Fig. 9 presents the associated exemplar images. MNIST has

separate train and test samples, and we select the first l = 30 0 0

and 40 0 0 samples from the train set, respectively, and use the

whole test samples for two groups of evaluation. Fig. 10 presents

the experimental results. We observe that the performance of
anifold-based methods is inferior to PCA that does not use neigh-

orhood graphs and even the baseline method. This is consistent

ith previous studies that report similar results ( van der Maaten

t al., 2009 ), and also indicates the nature of data influences a di-

ensionality reduction approach ( Passalis & Tefas, 2017 ). The pos-

ible explanation lies in the lack of manifold in the data and the

lobal covariance matrix is more feasible for capturing the latent

nformation. Despite this, we observe that the proposed method

utperforms LPP, indicating the superiority of our proposed strat-

gy in optimizing the local structure. 

.6. Evaluation of the number of neighbors 

Herein, we evaluate the effect of varying the number of neigh-

ors on the performance. Fig. 11 presents corresponding results.

he X-axis represents the number of neighbors and its maximal

alue is less than the number of samples per class (minus one),

nd the Y-axis corresponds to the error rates. From Fig. 11 , we ob-

erve that the number of neighbors indeed influences the perfor-

ance of LAPP and that taking two samples within the same class

s neighbors generally obtains better performance. A possible ex-

lanation lies in the adaptive measurement of neighborhood simi-

arity. 

Overall, according to the above results and comparative analy-

es, we conclude that the proposed method helps reduce the neg-

tive effect of noisy and irrelevant features and contributes to ob-

aining accurate neighborhood relatedness and preserving the data

anifold. Particularly, as for the above face recognition experi-

ents, we find that LAPP obtains slightly lower recognition error
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Fig. 9. Exemplar digit images of MNIST. 

Fig. 10. Error rates versus dimensions of PCA, LDA, NPE, LPP, LAPP, and Baseline method on MNIST. 

Fig. 11. Error rates versus the number of neighbors on the projection. 
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ates than its competitors under a small-size training set, while in

ase of a larger number of training samples, the use of LAPP ob-

ains lower error rates and helps explore the intrinsic dimension-

lity of the data. This indicates the superiority of LAPP in handling

 relatively large-size dataset to a certain extent. 

. Conclusions 

Dimensionality reduction techniques have been consistently 

laying an important role in the procedure of data analysis and

he design of an intelligent expert system such as face recognition

nd disease diagnosis, and they significantly facilitate, among other

asks, the classification, clustering, visualization, and compression

n handling the data of high-dimensionality. Due to the complex
on-linear relations inherent in data, however, dimensionality re-

uction methods that preserve the local properties of the data gen-

rally obtain better performance, among which, locality preserving

rojections explores the manifold structure and has been success-

ully applied to multiple applications. Particularly, for local meth-

ds, how to obtain the true neighbors and accurately measure the

eighborhood relatedness for each data point remains crucial. Be-

ause of the noisy and irrelevant features, it is error-prone to de-

ermine neighbors in the original feature space. Herein, we propose

he locality adaptive preserving projections (LAPP) method to seek

eliable neighbors in the optimal subspace, where LAPP iteratively

pdates the projected optimal subspace and optimizes the simi-

arity measurement of the data. Moreover, LAPP is easy to imple-

ent. Extensive comparative experiments are conducted on both
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synthetic and real-world datasets. Experimental results show that

seeking the local structure in the original space misleads the selec-

tion of neighbors and the calculation of similarity, which demon-

strates the superiority of the proposed method. 

Along with this study, we plan to work in the following re-

search lines for the future work. First, the proposed method may

fail to effectively deal with the linearly non-separable data. In view

of the fact that kernel-based techniques help alleviate the problem

( Schölkopf, Smola & Müller, 1998 ), we plan to explore its corre-

sponding kernel version and experimentally validate it. Second, al-

though the proposed method facilitates the search and selection

of candidate intrinsic dimensions for a specific application, the un-

derlying theoretical explanation and other theoretical ways to de-

termining the intrinsic dimensionality are in need. Third, the ex-

perimental results demonstrate the significant role of neighbor-

hood relationships in designing a dimensionality reduction algo-

rithm. This inspires us to explore and improve relevant meth-

ods for enhanced performance. Fourth, previous researches show

that working on 1-D vector fails to exploit the spatial structure

information of the multiple dimensional objects such as medi-

cal images and remote sensing images ( Zhang, Nie, Zhang & Li,

2018 ). The use of matrix-based 2-D and even tensor-based di-

mensionality reduction methods is a priority. Similarly, preserving

the true neighborhood relatedness for such types of data is cru-

cial, which deserves further study to explore how to enhance their

robustness. Finally, the choice of dimensionality reduction meth-

ods for real-world applications mainly depends on the character-

istics of the used data and the type of the learning task, while

the large number of existing methods may confuse users. There-

fore, an initial effort towards developing a practical guideline on

how to objectively evaluate existing methods and appropriately

choose the most suitable one remains another topic for future

research. 
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