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Abstract—The extraction and use of features from the raw 
sensor data plays an extremely crucial role in determining the 
recognition performance of an activity recognizer. Existing 
studies aim to train an accurate prediction model by extracting 
different features, however, few of them systematically 
investigate the power of features from different domains when 
they are used separately or jointly. To this end, we conduct a 
comparative study on multi-domain feature extraction for 
human activity recognition. Specifically, we first extract 
features from the time-, frequency-, and wavelet-domains, and 
then use different combinations of the three domain features to 
build activity recognizers. Finally, comparative experiments 
are performed on two activity recognition datasets and four 
classification models are used to avoid selection bias. Results 
indicate the superiority of using time-domain or frequency-
domain features over wavelet features in terms of prediction 
performance and also show that the simultaneous use of multi-
domain features generally generalizes better across datasets 
and classifiers, indicating that they, to a certain extent, contain 
complementary feature information.   

Keywords-Activity recognition; wearable sensor; time domain; 
frequency domain; wavelet 

I.  INTRODUCTION 
The objective of activity recognition is to automatically 

recognize human activities and gain deep understanding of 
human behaviour, wellness, plan, and intention with the 
emerging technologies such as internet of things, pervasive 
computing, artificial intelligence, sensor technology, and big 
data [1]. Particularly, activity recognition essentially helps 
connect the raw sensor signals with practical application 
services in the context of ambient assisted living, human 
computer interaction, intelligent transportation, smart home, 
and among others [2]. Human activities, however, are 
typically associated with inherent complexity due to the 
nature of human behaviour. For example, there exist inter-
subject variation and intra-subject variation and there are 
human activities that trigger similar sensor signals, making 
it more challenging to accurately infer human activities [3].  

To handle different application scenarios and achieve 
enhanced recognition accuracy, researchers have proposed a 
wealth of feasible solutions, which we broadly group into 
wearable sensor-, ambient sensor-, and vision-based 
methods according to the used sensing units [4]. Compared 

with ambient sensor- and vision-based methods, wearable 
sensor-based methods generally have low cost, better 
portability, and high adherence. Besides, they tend to have a 
broader range of applications along with the development of 
various sensing devices in size and the processing power. 
Particularly, we can embed the sensing units such as WIFI, 
Bluetooth, accelerometer, camera, and gyroscope into a 
smartphone to better support context-aware applications [5]. 
According to the used models in training an activity 
recognizer, we can divide existing activity recognizers into 
knowledge-driven model and data-driven model, where the 
former uses domain knowledge to formally define activity 
specification and the latter learns an activity recognizer 
from the collected sensor data and generally better handles 
new cases.  

Based on the activity recognition chain of data-driven 
models, the extraction and use of features from original 
sensor signals plays a crucial role in determining the 
prediction accuracy of an activity recognizer from the 
perspective of machine learning [1]. Even if deep learning 
models have the capacity to learn abstract features from raw 
data automatically, they generally require expensively 
computational resources and often suffer from limited 
interpretability [6]. Therefore, it is still valuable to extract 
hand-crafted features. In addition, studies show that hand-
crafted features contain complementary information to the 
learned features, which helps to enhance classification 
performance. Accordingly, researchers have used various 
features to obtain the important characteristics of the 
collected sensor data for better discriminating different 
activities [7, 8], among which time-domain features, 
frequency-domain features, and their combinations are the 
most commonly used. For example, Bulling et al. extracted 
the mean and variance of signals and features based on 
fast Fourier transform (FFT) [1]. There are also studies 
that use wavelet transform to obtain the temporal and 
spectral information of raw signals [9]. For example, 
Preece et al. extracted wavelet features from sensor data 
and compared them with time-domain and frequency-
domain features [9]. Although researchers have done 
considerable work in extracting features, few studies, to 
the best of our knowledge, systematically investigate the 
power of different domain features and their different 
combinations in training a robust activity recognition model. 
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To this end, we herein perform a comparative study on the 
power of different domain features when they are used 
separately or simultaneously. The main contributions of this 
study include: (1) An activity recognition model based on 
multi-domain feature extraction is presented. Besides the 
use of single domain features, we also evaluate their 
different combinations, such as the combination of time- 
and wavelet-domains, and the combination of frequency- 
and wavelet-domains. This would potentially direct users to 
the extraction and use of informative features. (2) Extensive 
comparative experiments are conducted on two datasets. 
Particularly, we use four widely used classification models 
with different metrics to avoid the classifier selection bias. 
Results show that the use of multi-domain features generally 
obtains enhanced prediction performance across datasets 
and classifiers.  

The reminder of this study is organized as follows. We 
present the activity recognition model and list the extracted 
features from three different domains in Section II. Section 
III gives experimental setup, results, and analysis, followed 
by the conclusion section.   

II. ACTIVITY RECOGNITION WITH MULTI-DOMAIN 
FEATURE EXTRACTION  

A. Activity Recognition Model 
Activity recognition chain (ARC) is mainly composed of 

the collection and segmentation of sensor signals, the 
extraction of features, the optimization of an activity 
recognition system, and performing activity recognition. 
The task of segmentation is to divide the collected time-
series sensor readings into segments using sliding window 
techniques (e.g., pre-segment, time-based, and event-based 
sliding window). We then get a feature vector by extracting 
various features from each segment. Afterwards, we train an 
activity recognizer with these feature vectors and use it to 
predict human activities. Figure 1 presents the framework of 
ARC and we can integrate different components into it. 
Obviously, feature extraction plays an extremely crucial role 
in determining the performance of an activity recognizer.  

From the perspective of signal representations, there are 
mainly three types of features for sensor-based activity 
recognition: time-, frequency-, and wavelet-domain features 
(providing temporal and spectral information). Since 
different domain features provide different data views, we 

can exploit their different combinations. That is, we can 
simultaneously use all of them or only use two of them (e.g., 
using time-domain and wavelet-domain features, using 
time-domain and frequency-domain features, and using 
frequency-domain and wavelet-domain features), where the 
use of time-domain and frequency-domain features is 
widely used in previous studies. Afterwards, we concatenate 
the chosen views to train an activity recognizer. It is 
noteworthy that other types of features such as deep learning 
learned features and features obtained from variational 
mode decomposition can also be flexibly integrated into 
Figure 1.  

B. Feature Extraction  
As previous studies have done, we take as time-series 

signals the raw sensor readings and then extract the time-, 
frequency-, and wavelet-domain features from the segments. 
Specifically, for a sensor with m axes {AX1, AX2, …, AXm}, 
we take each axis as a data source. We can extract various 
features from each axis and then concatenate the features of 
different axes to obtain the feature vector.  

For time-domain features, we calculate the standard 
deviation, mean, minimum, maximum, median, difference 
between the maximum and minimum, median absolute 
deviation, zero crossing rate, 0.25 quantile, and 0.75 
quantile. Besides, we calculate the Pearson correlation 
coefficient (PCC) between two of its axes (if m ≥ 2). For 
example, for a 3-axis accelerometer, we get the PCCs 
between AX1 and AX2, AX1 and AX3, and AX2 and AX3.  

For frequency-domain features, for each axis, we first 
use FFT to transform the signals into frequency domain. 
Afterwards, we empirically extract the direct component, 
the first five peaks, the positions of the five peaks, and 
energy that equals the sum of the squared FFT coefficients 
(without the direct component). Besides, according to the 
distribution of the FFT coefficients, we extract four 
amplitude features (including standard deviation, mean, 
skewness, and kurtosis) and four shape features (including 
standard deviation, mean, skewness, and kurtosis).  

For wavelet features, we apply the Daubechies wavelet 
packet of order five (DB5) on the original time-domain 
signal and decompose it into five levels. Specifically, the 
original signal is first decomposed into a detail signal (cD1) 
and a coarse approximation signal. Then, the approximation 
signal is further decomposed into a second approximation   

 

 
Figure 1.  Activity recognition model based on multi-domain feature extraction.  
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signal and a detail signal (cD2). Repeat the above procedure 
until the defined number of decomposition level is reached. 
After five level decomposition, we obtain the detail signals 
(cD1, cD2, cD3, cD4, and cD5) at levels 1-5 and the 
approximation signal (cA). According to our preliminary 
comparative results, we take as features the sum of absolute 
values (i.e., ||cD1||1, ||cD2||1, ||cD3||1, ||cD4||1, ||cD5||1, and 
||cA||1).   

III. EXPERIMENTAL SETTING AND RESULTS 

A. Experimental Setting 
We conducted comparative experiments on two public 

datasets to evaluate the power of time-domain, frequency-
domain, wavelet features and their different combinations in 
recognizing human activities. The first dataset WSIDM 
aims to recognize six human activities (i.e., standing, 
jogging, walking, sitting, upstairs, and downstairs,) [7]. The 
sensor data was collected by a phone-based three-axis 
accelerometer with a 20Hz sampling rate from 29 users 
when they performed the activities. We segment the sensor 
data with a ten-second sliding window, where there is non-
overlapping between two consecutive windows. We then 
extract time-domain, frequency-domain as well as wavelet 
features from each segment to represent raw sensor data. 
The task of the second dataset SKODA is to infer the ten 
manipulative gestures by using the data collected from a car 
maintenance assembly-line worker [8]. The sensor data 
sampled at 96Hz were collected by 3-axis accelerometers 
worn the left and right lower and upper arm of a worker. We 
here use one accelerometer for experiments. We first divide 
the sensor data with a 2s half-overlapping sliding window 
and then extract different domain features.  

After obtaining the features, we use them separately or 
jointly to train activity recognizers. As for the classification 
models, four different classifiers, including naïve Bayes 
(NB), decision tree (DT), AdaBoost, and random forest (RF), 
are used to train the activity recognizers for comparison 

purposes [10, 11, 12, 13]. These models are also commonly 
used in previous studies. Specifically, we take decision tree 
as the weak learner of AdaBoost. Besides, we take as the 
performance metrics precision (Prec), recall (Rec), F-
measure, and accuracy (Acc), where F-measure accounts for 
the imbalanced classification problems.  

Given L = {L1, L2, …, L|L|} to denote a label set with |L| 
classes,   

2* *precision recall
F measure

precision recall
, (1) 

| |

1

1
| |

L
i

i i

Num
precision

L NP
,          (2) 

where Numi is the number of samples from class Li that are 
correctly classified, and NPi is the number of samples 
predicted with class Li.  

| |

1

1
| |

L
i

i i

Num
recall

L NT
,        (3) 

where NTi is the number of samples from class Li.  

B. Experimental Results 
Tables I and II present the experimental results of the two 

datasets, respectively. The first column indicates the used 
features. Specifically, the seven entries Time, Freq, Wav, 
Time-Freq, Time-Wav, Freq-Wav, and Time-Freq-Wav 
correspond to the features that are from time-domain, 
frequency-domain, wavelet, fusion of time-domain and 
frequency-domain features, fusion of time-domain and 
wavelet features, fusion of frequency-domain and wavelet 
features, and combination of time-domain, frequency-
domain and wavelet features. The results are organized by 
the used classifier, and for each group, the best accuracy is 
shown in bold and the second best one is shown in 
underlined. Besides, Figures 2 and 3 present the F-measure 
scores of the different types of features on WSIDM and 
SKODA, respectively.    

TABLE I.      Experimental results of different feature sets on WSIDM 

Features NB DT AdaBoost RF 
Acc Prec Rec Acc Prec Rec Acc Prec Rec Acc Prec Rec 

Time 76.50 73.60 73.05 93.42 90.85 91.80 98.00 96.61 98.05 98.10 96.87 98.10 
Freq 84.95 82.62 81.03 94.33 91.88 92.24 97.19 95.62 96.30 97.31 95.88 96.33 
Wav 81.21 78.32 78.23 89.77 85.98 86.59 94.38 90.30 94.82 94.43 90.31 94.63 

Time-Freq 84.65 82.71 80.73 94.49 92.38 92.30 98.21 97.28 97.76 98.29 97.37 97.78 
Time-Wav 78.74 78.24 77.13 93.63 91.27 91.73 97.97 96.64 98.03 98.12 96.81 98.17 
Freq-Wav 85.78 84.26 82.24 94.28 91.92 91.91 97.43 96.14 96.72 97.34 95.96 96.53 

Time-Freq-Wav 85.35 83.93 81.77 94.60 92.48 92.59 98.25 97.34 97.92 98.36 97.45 97.85 

TABLE II.      Experimental results of different feature sets on SKODA 

Features NB DT AdaBoost RF 
Acc Prec Rec Acc Prec Rec Acc Prec Rec Acc Prec Rec 

Time 76.74 78.56 79.71 87.56 86.85 86.81 95.75 95.12 95.09 96.17 95.83 95.78 
Freq 63.39 66.56 69.40 84.30 84.17 84.35 93.77 93.37 93.51 93.63 93.35 93.35 
Wav 60.75 63.50 62.13 77.27 76.43 76.77 88.48 87.28 87.44 87.78 86.25 86.48 

Time-Freq 75.20 77.28 79.35 88.44 88.20 88.12 96.23 95.66 95.72 96.41 95.81 95.81 
Time-Wav 76.06 77.75 78.30 87.95 87.74 87.86 96.78 96.07 96.03 96.76 95.98 95.99 
Freq-Wav 70.60 73.04 73.75 85.26 84.35 84.68 95.60 94.82 94.86 95.57 94.63 94.75 

Time-Freq-Wav 76.41 78.23 79.46 88.79 87.96 88.25 96.89 96.24 96.29 96.96 96.10 96.12 
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From Tables I and II and Figures 2 and 3, we see that the 
use of time-domain features and frequency-domain features 
outperforms the use of wavelet features except for the case 
of using NB on WSIDM. For example, the accuracy of 
using wavelet features on WSIDM for RF is 94.43% 
compared with the 98.10% accuracy of time-domain 
features and 97.31% accuracy of frequency-domain features. 
For SKODA, the obtained accuracies are 96.17%, 93.63%, 
and 87.78% for RF, respectively. Second, we observe that 
the use of time-domain features and the use of frequency-
domain features obtain mixed results. For example, on 
WSIDM, the use of frequency-domain features gets higher 
accuracy than time-domain features with NB, while the use 
of time-domain features performs better with DT. Third, for 
the combination of two of the three different domain 
features, the joint use of time-domain and frequency-domain 
features generally has better generation ability across 
datasets than the combination of time-domain and wavelet 
features and the fusion of frequency-domain and wavelet 
features. Besides, we observe that the use of two different 
domain features obtains classification accuracy comparable 
to or higher than the use of single domain features. Fourth, 
we observe that the use of three different domain features 
generally obtains the best accuracy, except the case of NB 
(where its accuracy is comparable to the best result). For 
example, for RF, the use of time-domain, frequency-domain, 
and wavelet features gets 98.36% accuracy on WSDIM and 
96.96% accuracy on SKODA. These results indicate that 
different domain features could complement each other and 
help to improve the generalization ability of an activity 
recognizer. Last, we observe that RF generally obtains 
better performance than NB, DT, and AdaBoost. This is 
mainly because RF, an ensemble of trees, randomly selects a 

subset of both samples and features to generate diverse base 
classification models.  
 

 
Figure 2.  F-measure comparison on WSIDM. 

 
Figure 3.  F-measure comparison on SKODA.

 

 
(a) time 

 
(b) frequency 

 
(c) wavelet 

 
(d) time-frequency 

 
              (e) time-wavelet 

 
(f) frequency-wavelet 

 
 (g) time-frequency-wavelet 

Figure 4.  Confusion matrix on WSIDM with different types of features using RF. 
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(c) wavelet 

 
(d) time-frequency 

 
(e) time-wavelet 

 
(f) frequency-wavelet 

 

 
(g) time-frequency-wavelet 

 

Figure 5.  Confusion matrix on SKODA with different types of features using RF. 

Furthermore, to evaluate the power of an activity 
recognizer in discriminating different activities, we 
investigate the confusion matrix. Figure 4 presents the 
confusion matrices on WSIDM obtained by using RF. The 
columns (rows) indicate the predicted (actual) labels. We 
see that the joint use of time-, frequency-, and wavelet-
domain features outperforms its competitors. We can see 
that the activity downstairs is easily confused with the 
activity upstairs and walking, where the simultaneous use of 
three domain features only misclassifies 52 downstairs into 
upstairs and walking, compared to the 66, 83, 252, 59, 68, 
and 81 errors of the other six cases, respectively. Figure 5 
presents the confusion matrices on SKODA of RF.  

IV. CONCLUSION 
From the perspective of machine learning, the extraction 

and use of features from the raw sensor signals determines, 

to a large extent, the prediction performance of an activity 
recognizer. There are studies that propose to extract various 
features from the signals, however, few studies conduct a 
systematic study on the power of features extracted from 
different domains and their combinations. To this end, we 
preliminarily conduct a comparative study on multi-domain 
feature extraction for activity recognition. Specifically, we 
first extract time-, frequency-, and wavelet- domain features 
from the sensor data and then use them separately or jointly 
to build activity recognizers. Finally, we conducted extensive 
comparative experiments on two datasets using different 
combinations of the three domain features. Results show that 
for the three domain features, the prediction performance of 
wavelet features is often lower than the ones of time-domain 
features and of frequency-domain features, and that the joint 
use of three domain features generally gets improved results 
across different datasets and classifiers. This indicates that 
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different domain features probably provide complementary 
activity views.  

For the future work, besides time-domain, frequency-
domain, and wavelet transformation features, there are other 
types of features (e.g., structural features, and discrete cosine 
transformation features) that can be extracted from the time 
series signals [14, 15]. It would be meaningful to conduct a 
comparative study. Second, the results show that the fusion 
of multi-domain features may not obtain the best prediction 
accuracy. This is possibly because there exist redundant and 
irrelevant features [16, 17]. Thus, using a feature selector to 
optimize the feature space remains another topic.  
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