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Human physical activities play an essential role in many aspects of daily living and are inherently associated with the
functional status and wellness of an individual, therefore, automatically and accurately detecting human activities
with pervasive computing techniques has practical implications. Although existing accelerometer-based activity
recognition models perform well in a variety of applications, most of them typically work by concatenating features
of different domains and may fail to capture the multi-view relationships, resulting in degraded performance. To this
end, we present a multi-view aggregation model to analyze the accelerometer data for human activity recognition.
Specifically, we extract the time-domain and frequency-domain features from raw time-series sensor readings to
obtain the multi-view data representations. Afterwards, we train a first-level model for each view and then unify the
models with stacking ensemble into a meta-model. Finally, comparative experiments on three public datasets are
conducted against other three activity recognition models. Results indicate the superiority of the proposed model
over its competitors in terms of four evaluation metrics across different scenarios.
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1. Introduction

It has been known that physical activities are inherently asso-
ciated with the functional status and wellness of an individual
and that accurately automating the recognition of activities
plays an important role in effectively bridging the gap be-
tween the low-level sensor data and high-level daily living
applications that range from human computer interaction,
sports and exercise to elderly healthcare, smart home, and
ambient assisted living [1, 2]. Accordingly, to adapt to dif-
ferent scenarios, researchers have explored various sensing
technologies, which can be grouped into wearable sensor-, en-
vironment sensor-, and vision-based methods [3, 4]. Different
from vision-based methods relying on computer vision tech-
niques and environment sensor-based methods inferring ac-

tivities according to the interaction between a person and the
surrounding objects, wearable sensor-based methods train an
activity recognizer with the collected sensor readings to infer
human activities. They have the advantage of being suitable
for indoor and outdoor scenarios, high adherence, low cost,
and high degree of portability [3].

As for wearable devices, commonly used sensing units
mainly include accelerometer, gyroscope, magnetometer,
heart rate chip, breath rate chip, and light, among which
the accelerometer that measure the acceleration is of the first
priority and perhaps the most commonly used sensors in
building an activity recognition system. For example, Bao
and Intille [5] built an activity recognizer by utilizing five
small biaxial accelerometers worn on different parts of the
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body to collect data and extracting four features (mean, en-
ergy, frequency-domain entropy, and correlation) to train an
activity recognizer. Ravi et al. [6] explored the use of a tri-axis
accelerometer to detect eight activities, where they collected
sensor data and extracted four features (mean, standard de-
viation, frequency-domain entropy, and correlation) to train
an activity recognition model. Förster et al. [7] presented an
accelerometer-based activity recognition model and applied
it to the scenarios of fitness track and gesture recognition.
They extracted the time-domain features (mean and vari-
ance) based on a sliding window. Lu et al. [8]presented
an unsupervised model to recognize activities by extracting
nineteen time-domain features from the accelerometers. With
the increasing power of a smartphone in processing and com-
munication, they are equipped with sensing units such as
accelerometer, gyroscope, and Bluetooth and accordingly pro-
vide a convenient way for sensing and data collection. For
example, Kwapisz et al. [9] used cell phone accelerometers
to recognize six simple activities, where they extracted mean,
standard deviation, average absolute difference, average re-
sultant acceleration, time between peaks, and binned distri-
bution features to build an activity recognizer. Dernbach et al.
[10]used the accelerometer in a smartphone to infer simple
and complex activities. In their study, thirty time-domain fea-
tures (e.g., mean, min, max, standard deviation, zero-cross,
and correlation) were extracted to encode the raw sensor data
into a feature vector.

One common feature of these methods is that they either
only use time-domain features or simply use the concate-
nated features of different domains. The former only utilizes
partial information, while the latter probably fails to capture
the relationships among different views [11]. To this end, we
proposed a multi-view aggregation model to analyze the ac-
celerometer data for activity recognition. Specifically, we first
extract time-domain and frequency-domain features from the
time-series sensor data to obtain the multi-view data repre-
sentations. Then, we train a first-level model for each view
and unify the models with stacking ensemble to get a meta-
model. Table 1. summarizes the comparison between the
proposed model and related work. Particularly, the main con-
tributions of this study are as follows. (1) We propose a model
to utilize multi-view sensor data under the stacking ensemble
framework. We detail its main components and present two
algebraic ensemble models for comparison purposes. (2) We
conduct extensive comparative experiments on three public
datasets. Results demonstrate the better generalization of our

model over its competitors, including the single-view, view
concatenation, and two algebraic ensemble models, across dif-
ferent scenarios.

2. Theory and formula

Human activity recognition chain (ARC) typically consists of
data collection, segmentation, feature extraction, model train-
ing, and prediction [12, 13]. Which features to be extracted
from raw sensor data largely determines the performance
of an activity recognizer. Generally, we can extract different
types of features, among which time-domain and frequency-
domain features are the most widely and commonly used
in previous studies. The two domains represent different
data views and we can analyze it under different learning
paradigms. For better illustration, let TD and FD be the time-
domain and frequency-domain features and use C = {C1, C2,
. . . , C|C|} to denote a label set with |C| different activities.

2.1. Single-view model

For single-view learning, we only take as input one of the
two views (i.e., TD or FD) to train an activity recognizer,
as shown in Fig.1(a). Besides, we can concatenate different
views and use it to train an activity recognizer, shown in
Fig. 1(b). For convenience, we name it as view concatenation
model. As we discussed in the introduction, this scheme is
commonly adopted.

2.2. Multi-view aggregation

For multi-view aggregation, the task is to train a model for
each view and combine their results according to the two
views TD and FD. Herein, we present two different aggrega-
tion schemes. To mitigate the voting conflict (e.g., view TD
labels a sample x as activity sitting, while view FD labels it as
activity lying), we use the soft voting. That is, in classifying x,
a classifier clsh outputs a vector h(x), which is the posterior
probability output. Specifically,

h
(

x) = [cls1
h
(

x), cls2
h
(

x), . . . , cls|c|h
(

x)]T (1)

where

clsi
h
(

x) = p(Ci|x) ∈ [0, 1], 1 ≤ i ≤ |C|,
|c|

∑
k=1

clsK
h
(
x) = 1

Obviously, we can combine the results of each view with
algebraic combiners such as max and mean, named the alge-
braic ensemble model in Fig.1(c). We here use the maximum
and average to make predictions H(x).

H(x) = Carg max
1≤i≤|C

{max{clsi
TD(x),clsi

FD(x)}} (2)
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Table 1. Comparisons between the proposed method and related work.

Studies Time domain Frequency domain Multiview
Bao et al.[5]

√ √
view concatenation

Ravi et al. [6]
√ √

view concatenation
Förster et al.[7]

√
× single-view

Lu et al. [8]
√

× single-view
Kwapisz et al. [9]

√ √
view concatenation

Ours
√ √

multi-view

H(x) = C
argmax
1≤i≤|C|

{
1

|{TD,FD}| ∑h∈{TD,FD} clsi
h(x)

} (3)

where clsi
TD
(

x) denotes the model trained on TD.
Besides, we can take as input the results obtained on each

view to train another model, as shown in Fig. 1(d). Specifi-
cally, we first train a first-level classifiers for each view and
then train a second-level classifier (also called meta-classifier)
with the concatenation outputs of first-level classifiers. For
convenience, we call it stacking ensemble model.

3. Experimental setup

To evaluate the proposed model, we conduct extensive com-
parative experiments on three public activity recognition
datasets. The first dataset BAFitness contains the sensor
readings of six activities (i.e., flick kicks, knee lifts, jumping
jacks, superman jumps, high knee runs, and feet back runs) that
were collected with ten tri-axis accelerometers working at
a sample rate of 64Hz and placed on the right leg [7]. For
each activity, about thirty seconds of sensor data were col-
lected. A constant eight-second sliding window with two
thirds overlap between consecutive segments is used to di-
vide the time-series data. The task of the second dataset HCI
is to recognize triangle pointing up, square, circle, infinity, and
triangle pointing down. The sensor data were collected with
eight accelerometers under a 96Hz sample rate. The raw data
were manually segmented to contain a single activity [7]. For
the two datasets, we only use one accelerometer for exper-
iments as did in [7], which is sufficient for the application.
The third dataset WISDM contains sensor signals of walking,
jogging, upstairs, downstairs, sitting, and standing that were
collected with a tri-axis accelerometer in a smartphone. The
sample rate is 20Hz and we divide the time series sensor data
with a ten-second sliding window without overlap between
consecutive segments [9].

Afterwards, we extract various features from each seg-
ment to form a feature vector for subsequent activity recog-

nition model training. Specifically, according to [14], for
a tri-axis accelerometer with readings ax, ay and az from
the axes X, Y, and Z, we obtain the resultant acceleration
a =

√
a2

x + a2
y + a2

z and then extract features from a. For time-
domain features, we use average, standard deviation, mode (the
value that occurs most frequently), maximum, minimum, range
(difference between maximum and minimum), and mean cross-
ing rate features. For frequency-domain features, we apply
the fast Fourier transform (FFT) algorithm on a to transform
it into frequency domain and then extract the direct compo-
nent, the first five peaks, frequencies of the five peaks, energy, four
shape features (mean, standard deviation, skewness, and kurtosis),
and four amplitude features. In total, there are twenty-seven
features from the time domain and frequency domain.

The models shown in Fig. 1 are general frameworks, so
we can take as the building blocks different classification
models. Herein, we adopt four models that have different
metrics, i.e., naïve Bayes (NB), k nearest neighbor (KNN),
decision tree (DT), and support vector machine (SVM). They
are commonly used in previous studies [3, 15, 16]. Particu-
larly, for the stacking ensemble model, different models can
be used in the first-level learner and meta-learner. We call
it the homogeneous mode in the case of the same model and
name it as heterogeneous mode in the case of different models.
In this study, we use SVM in the meta-learner because of its
discrimination capability and use other classifiers at the first
level. We also evaluate the combination of different models
and present corresponding results in the following section.

To create independent training set and test set, we use
stratified three-fold cross validation on BAFitness and HCI,
where two thirds of the data are used to train an activity rec-
ognizer. For WSIDM, we randomly partition it into training
set and test set with the ratio of 7:3 and repeat the process
ten times. Finally, we report the mean results. Accuracy (Acc),
precision (Prec), recall (Rec), and F1 are used as performance
metrics. For illustration purpose, Table 2 presents an ex-
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Fig. 1. Activity recognition models with different learning schemes. (a) single-view model; (b) view concatenation model; (c)
algebraic ensemble model; (d) stacking ensemble model.

(a) Portland cement from But Son (b) Fly ash from Vung Ang (c) GGBFS from Hai Duong

(d) Crushed sand from Phu Ly (e) Saline sand from Quang Binh (f) Saline sand from Quang Binh

Fig. 2. Confusion matrix on BAFitness of the six models.
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emplar confusion matrix of three classes for calculating the
metrics.

Precision is the weighted average of the correctly classified
sample for each class.

Table 2. Confusion matrix of three classes.

True labels
C1 C2 C3 sum

Predicted labels

C1 T11 FP12 FP13 NP1
C2 FP21 T22 FP23 NP2
C3 FP31 FP32 T33 NP3

sum NT1 NT2 NT3 total

Precision =
1
|C|

|C|

∑
i=1

Tii
NPi

(4)

where Tii is the number of samples from class Ci that
are correctly classified, and NPi is the number of samples
predicted with class Ci. Recall is the percentage of correctly
retrieved samples for each class.

Recall =
1
|C|

|C|

∑
i=1

Tii
NTi

(5)

where NTi equals the number of instances from class Ci.
F1 is the harmonic mean of precision and recall.

F1 =
2∗ precision ∗ recall
precision + recall

(6)

4. Result discussions

Tables 3 4 5 present the experimental results on the three
datasets. We use “TDV”, “FDV” and “TFDV” to denote the
recognizers that are trained on the time-domain, frequency-
domain, and concatenation views, respectively. “EnMax” and
“EnAvg” correspond to the algebraic ensemble models with
maximum and mean aggregators, respectively. “stacking”
refers to the proposed stacking ensemble model. The results
are organized by the used first-level model. and the best
results of each group are shown in bold and the second best
is underlined.

From Tables 3 to 5, we see that the fusion of time-domain
and frequency-domain features obtains better performance
than that of only using time-domain or frequency-domain fea-
tures in the majority of cases in terms of accuracy, precision,
recall, and F1. For example, in the case of NB on BAFitness,
TFDV obtains the accuracy of 82.14% compared to the 70.24%

accuracy of TDV and 76.91% accuracy of FDV. This indicates
that the two domains contain information that is complemen-
tary to each other. However, we also see that concatenating
the two views may get degraded performance. For instance,
TFDV only obtains 16.67% accuracy compared to the 41.19%
accuracy of TDV when using SVM on BAFitness. This is
possibly because the view concatenation may confound the
characteristics of each view and result in information redun-
dancy. As for TDV and FDV, they obtain mixed results. For
example, on WISDM, FDV outperforms TDV when using
NB, KNN and DT, but has lower accuracy with SVM. Second,
we can observe that the proposed stacking-based activity rec-
ognizer generally performs better than its competitors and
generalizes better across classifiers and datasets. For exam-
ple, on HCI, TFDV obtains the best results in the case of NB,
but it performs worst with SVM. Investigating the results on
BAFitness, HCI and WISDM, we observe the robustness of
Stacking. Third, as for the ensemble models, we observe that
stacking generally outperforms EnMax and EnAvg. This is
possibly because statistically aggregating the results of differ-
ent views may fail to capture the latent relationships among
views.

Afterwards, we present the confusion matrix to investi-
gate the performance improvement of the proposed model.
We here only show the results on BAFitness for illustration
purposes. Fig. 2 presents the results of NB. The rows give
the actual labels and the columns indicate the predicted re-
sults. From Fig. 2, we observe that the stacking-based activity
recognition model tends to obtain better performance than
its competitors.

Finally, we investigate the use of different classifiers in the
stacking model, where NB, KNN, DT, and SVM can be used
at the first level and also the second level. Tables 6-8 show
the corresponding results in terms of accuracy, precision,
recall, and F1 on the three experimental datasets, respectively,
where the results are grouped by the used first-level classifier.
The best results within each group are shown in bold. From
Tables 6-8, we observe that the use of SVM at the second
level generally performs better, which is consistent with the
previous results.

5. Conclusions

Accurately automating the recognition of human physical ac-
tivities plays key roles in daily living and effectively bridges
the gap between the sensor data and high-level applications
that range from human computer interaction and sports and
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exercise to elderly healthcare, smart home, and ambient as-
sisted living. Accordingly, researchers have explored various
sensing technologies to adapt to different scenarios, among
which the accelerometer is of the priority and the most com-
monly used in building a wearable sensor-based activity
recognition system. In the activity recognition chain, how to
utilize the extracted features largely determines the perfor-
mance of an activity recognizer. To this end, we here present
a multi-view aggregation model to analyze the accelerome-
ter data for activity recognition. Specifically, we first extract
time-domain and frequency-domain features to obtain the
multi-view data and train a model for each view and then
unify the models with stacking ensemble. We compare the
proposed model with the single-view, view concatenation, and
algebraic ensemble models on three datasets in terms of four
performance metrics. Results demonstrate the superiority of
the proposed model over its competitors across classification
models and datasets.

For the future work, we plan to conduct researches along
the following lines. First, one limitation of this study is that
we evaluated the model in an offline way, which may be dif-
ferent from the online real-time cases. This motivates us to
conduct further study. Second, we here only consider time-
domain and frequency-domain features. Other features such
as the time-frequency-domain features and deep learning
learned features can also be used. Third, besides accelerome-
ter, there are other sensors such as gyroscope, sound and light
available for use. However, cross-modal differences pose a
challenge for heterogeneous data analyses [17]. Hence, how
to fuse multi-modal multi-view sensor data requires further
study.

Acknowledgements

This work was partially supported by the National Natural
Science Foundation of China (No. 61902068), Anhui Provin-
cial Major Scientific and Technological Special Project (No.
201903A06020026), Key Research and Development Project
of Anhui Province (No. KJ2019ZD44), Foshan Self-funded
ST Innovation Plan (No. 1920001001001), Program of Natu-
ral Science Foundation of Department of Education of An-
hui Province (No. KJ2018B05, KJ2019A0647), and Research
Project of Chuzhou University (No. 2020QD13).



Journal of Applied Science and Engineering, Vol 24 No 4, pages 611-620 617

Ta
bl

e
3.

R
ec

og
ni

ti
on

pe
rf

or
m

an
ce

of
th

e
si

x
m

od
el

s
on

BA
Fi

tn
es

s.

M
od

el
N

B
K

N
N

D
T

SV
M

A
cc

Pr
ec

R
ec

F1
A

cc
Pr

ec
R

ec
F1

A
cc

Pr
ec

R
ec

F1
A

cc
Pr

ec
R

ec
F1

TD
V

70
.2

4
70

.8
9

75
.7

9
73

.1
9

74
.7

6
74

.1
3

74
.9

8
74

.5
5

90
.0

0
89

.6
7

90
.3

4
90

.0
0

41
.1

9
42

.3
2

40
.5

2
41

.4
0

FD
V

76
.9

1
77

.0
6

79
.1

8
78

.1
0

46
.6

7
46

.0
1

46
.5

3
46

.2
6

87
.1

4
87

.1
8

87
.6

6
87

.4
2

16
.6

7
16

.6
7

16
.6

7
16

.6
7

T
FD

V
82

.1
4

82
.3

7
83

.9
6

83
.1

5
46

.6
7

46
.0

1
46

.5
3

46
.2

6
88

.1
0

87
.9

7
88

.7
6

88
.3

6
16

.6
7

16
.6

7
16

.6
7

16
.6

7
En

M
ax

79
.5

2
80

.0
6

81
.6

1
80

.8
2

69
.0

5
68

.3
2

69
.5

1
68

.9
1

89
.2

9
89

.3
9

89
.6

8
89

.5
3

19
.5

2
16

.6
7

19
.5

2
17

.9
8

En
A

vg
79

.7
6

80
.3

0
82

.1
4

81
.2

0
71

.1
9

70
.6

0
71

.8
0

71
.2

0
89

.2
9

89
.3

9
89

.6
8

89
.5

3
19

.5
2

16
.6

7
19

.5
2

17
.9

8
st

ac
ki

ng
84

.7
6

84
.8

3
86

.1
8

85
.4

9
77

.1
4

76
.3

3
77

.2
8

76
.8

0
89

.7
6

89
.6

0
90

.6
9

90
.1

4
81

.1
9

80
.7

5
82

.7
8

81
.7

4

Ta
bl

e
4.

R
ec

og
ni

ti
on

pe
rf

or
m

an
ce

of
th

e
si

x
m

od
el

s
on

H
C

I.

M
od

el
N

B
K

N
N

D
T

SV
M

A
cc

Pr
ec

R
ec

F1
A

cc
Pr

ec
R

ec
F1

A
cc

Pr
ec

R
ec

F1
A

cc
Pr

ec
R

ec
F1

TD
V

65
.1

5
65

.1
9

66
.3

6
65

.7
6

31
.4

4
31

.5
7

28
.2

2
29

.7
57

.9
6

57
.8

7
59

.5
3

58
.6

6
62

.5
0

62
.6

4
66

.4
8

64
.4

8
FD

V
87

.1
2

87
.1

2
87

.6
5

87
.3

9
45

.0
8

45
.1

4
46

.5
1

45
.7

9
84

.4
7

84
.4

0
85

.3
6

84
.8

8
32

.5
8

32
.9

4
30

.2
2

31
.2

6
TF

D
V

87
.8

8
87

.8
7

88
.4

3
88

.1
5

45
.0

8
45

.1
4

46
.5

1
45

.7
9

84
.4

7
84

.4
0

85
.3

7
84

.8
8

32
.5

8
32

.9
4

30
.2

2
31

.2
6

En
M

ax
87

.1
2

87
.1

0
87

.5
1

87
.3

1
44

.7
0

44
.7

3
44

.0
0

44
.3

5
77

.6
5

77
.5

8
78

.1
5

77
.8

6
54

.9
2

55
.0

5
55

.4
0

55
.1

7
En

A
vg

87
.1

2
87

.1
0

87
.5

4
87

.3
2

45
.8

3
45

.8
6

45
.9

0
45

.8
8

77
.6

5
77

.5
8

78
.1

5
77

.8
6

63
.2

6
63

.4
0

64
.3

1
63

.8
5

st
ac

ki
ng

86
.7

4
86

.7
3

87
.2

7
87

.0
0

47
.3

5
47

.3
9

48
.0

5
47

.7
1

87
.5

0
87

.3
9

87
.9

9
87

.6
9

69
.3

2
69

.3
0

71
.4

7
70

.3
6



618 Aiguo Wang et al.

Table
5.R

ecognition
perform

ance
ofthe

six
m

odels
on

W
SID

M
.

M
odel

N
B

K
N

N
D

T
SV

M
A

cc
Prec

R
ec

F1
A

cc
Prec

R
ec

F1
A

cc
Prec

R
ec

F1
A

cc
Prec

R
ec

F1
TD

V
74.43

62.93
65.48

64.18
68.67

57.84
58.50

58.17
78.18

68.07
68.62

68.34
73.39

59.07
62.79

60.81
FD

V
85.59

75.30
76.67

75.98
79.14

67.84
68.30

68.07
84.39

74.61
75.02

74.82
35.71

35.94
36.10

35.91
TFD

V
85.45

75.23
76.58

75.90
79.23

67.93
68.45

68.19
84.00

73.80
74.38

74.09
38.29

43.22
43.92

43.42
EnM

ax
85.06

74.01
76.44

75.2
1

76.75
60.18

70.96
65.12

83.79
72.18

74.95
73.54

74.52
54.01

62.20
57.73

EnA
vg

85.29
74.27

76.63
75.43

76.75
60.18

70.96
65.12

83.88
72.31

75.02
73.64

73.83
51.63

64.60
57.30

stacking
86.11

76.43
77.62

77.02
79.43

67.91
68.77

68.33
87.68

78.96
79.90

79.43
73.39

59.07
62.79

60.81

Table
6.R

esults
on

BA
Fitness

ofthe
com

bination
ofdifferentclassifiers.

M
etric

N
B

K
N

N
D

T
SV

M
N

B
K

N
N

D
T

SV
M

N
B

K
N

N
D

T
SV

M
N

B
K

N
N

D
T

SV
M

N
B

K
N

N
D

T
SV

M
A

cc
34.76

84.29
83.10

84.76
75.00

77.14
70.71

77.14
35.00

74.05
85.71

89.76
71.91

65.00
70.95

81.19
Prec

32.28
84.36

83.02
84.83

74.08
76.86

70.41
76.33

35.46
74.72

85.72
89.60

71.87
65.55

70.93
80.75

R
ec

77.21
85.48

83.41
86.18

75.52
78.21

71.48
77.28

47.25
75.91

88.03
90.69

74.32
69.91

72.89
82.78

F1
45.50

84.91
83.21

85.49
74.79

77.53
70.93

76.80
38.09

75.31
86.85

90.14
73.07

67.65
71.89

81.74



Journal of Applied Science and Engineering, Vol 24 No 4, pages 611-620 619

Ta
bl

e
7.

R
es

ul
ts

on
H

C
Io

ft
he

co
m

bi
na

ti
on

of
di

ff
er

en
tc

la
ss

ifi
er

s.

M
et

ri
c

N
B

K
N

N
D

T
SV

M
N

B
K

N
N

D
T

SV
M

N
B

K
N

N
D

T
SV

M
N

B
K

N
N

D
T

SV
M

N
B

K
N

N
D

T
SV

M
A

cc
35

.9
9

86
.7

4
82

.2
86

.7
4

15
.1

5
43

.5
6

41
.6

7
47

.3
5

46
.5

9
85

.2
3

80
.6

8
87

.5
0

57
.9

6
62

.1
2

60
.2

3
69

.3
2

Pr
ec

36
.2

5
86

.7
8

82
.0

7
86

.7
3

15
.2

1
43

.6
0

41
.6

8
47

.3
9

46
.7

3
85

.1
0

80
.5

7
87

.3
9

58
.0

4
62

.0
7

60
.3

3
69

.3
0

R
ec

77
.4

3
87

.0
4

83
.0

4
87

.2
7

20
.5

0
44

.5
7

43
.2

0
48

.0
5

52
.3

7
85

.8
8

81
.9

1
87

.9
9

59
.5

7
62

.9
9

61
.4

1
71

.4
7

F1
49

.2
6

86
.9

1
82

.5
5

87
.0

0
17

.3
4

44
.0

7
42

.4
2

47
.7

1
49

.3
1

85
.4

9
81

.2
3

87
.6

9
58

.7
9

62
.5

2
60

.8
6

70
.3

6

Ta
bl

e
8.

R
es

ul
ts

on
W

SI
D

M
of

th
e

co
m

bi
na

ti
on

of
di

ff
er

en
tc

la
ss

ifi
er

s.

M
et

ri
c

N
B

K
N

N
D

T
SV

M
N

B
K

N
N

D
T

SV
M

N
B

K
N

N
D

T
SV

M
N

B
K

N
N

D
T

SV
M

N
B

K
N

N
D

T
SV

M
A

cc
44

.5
8

82
.1

9
83

.8
9

86
.1

1
70

.6
3

75
.3

4
79

.3
7

79
.4

3
40

.4
6

78
.9

5
80

.5
5

87
.6

8
65

.9
4

70
.3

2
69

.6
6

78
.1

1
Pr

ec
29

.5
8

70
.2

8
72

.1
3

76
.4

3
43

.4
9

58
.4

1
67

.1
0

67
.9

1
42

.2
9

66
.2

2
69

.3
6

78
.9

6
52

.8
4

56
.6

4
58

.5
8

58
.0

1
R

ec
50

.0
4

70
.7

2
72

.6
6

77
.6

2
56

.6
6

60
.9

0
69

.1
6

68
.7

7
45

.3
5

66
.5

7
69

.6
3

79
.9

0
55

.4
0

57
.1

4
59

.0
2

74
.4

3
F1

36
.9

9
70

.4
9

72
.3

9
77

.0
2

49
.0

4
59

.5
7

68
.1

1
68

.3
3

43
.5

4
66

.3
9

69
.4

9
79

.4
3

54
.0

7
56

.8
9

58
.7

9
65

.1
7



620 Aiguo Wang et al.

References

[1] Jing Yu, Hang Li, Shou Lin Yin, Qingwu Shi, and Shahid
Karim. Dynamic gesture recognition based on deep learn-
ing in human-to-computer interfaces. Journal of Applied
Science and Engineering, 23(1):31–38, 2020. ISSN 15606686.

[2] Aiguo Wang, Shenghui Zhao, Chundi Zheng, Jing Yang,
Guilin Chen, and Chih Yung Chang. Activities of Daily
Living Recognition with Binary Environment Sensors Us-
ing Deep Learning: A Comparative Study. IEEE Sensors
Journal, 21(4):5423–5433, 2021. ISSN 15581748.

[3] Andreas Bulling, Ulf Blanke, and Bernt Schiele. A tutorial
on human activity recognition using body-worn inertial
sensors. ACM Computing Surveys, 46(3), jan 2014. ISSN
03600300.

[4] Aiguo Wang, Shenghui Zhao, Chundi Zheng, Huihui
Chen, Li Liu, and Guilin Chen. HierHAR: Sensor-
Based Data-Driven Hierarchical Human Activity Recog-
nition. IEEE Sensors Journal, 21(3):3353–3365, 2021. ISSN
15581748.

[5] Ling Bao and Stephen S. Intille. Activity recognition from
user-annotated acceleration data. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 3001:1–17,
2004. ISSN 16113349.

[6] Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, and
Michael Littman. Activity recognition from accelerome-
ter data. In 17th Conference on Innovative Applications of
Artificial Intelligence, pages 1541–1546, 2005.

[7] Kilian Förster, Daniel Roggen, and Gerhard Tröster. Un-
supervised classifier self-calibration through repeated
context occurences: Is there robustness against sensor
displacement to gain? In Proceedings - International Sym-
posium on Wearable Computers, ISWC, pages 77–84, 2009.
ISBN 9780769537795.

[8] Yonggang Lu, Ye Wei, Li Liu, Jun Zhong, Letian Sun, and
Ye Liu. Towards unsupervised physical activity recogni-
tion using smartphone accelerometers. Multimedia Tools
and Applications, 76(8):10701–10719, 2017. ISSN 15737721.

[9] Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A.
Moore. Activity recognition using cell phone accelerome-
ters. ACM SIGKDD Explorations Newsletter, 12(2):74–82,
mar 2011. ISSN 1931-0145.

[10] Stefan Dernbach, Barnan Das, Narayanan C. Krishnan,
Brian L. Thomas, and Diane J. Cook. Simple and complex
activity recognition through smart phones. In Proceedings
- 8th International Conference on Intelligent Environments, IE

2012, pages 214–221, 2012. ISBN 9780769547411.
[11] Jing Zhao, Xijiong Xie, Xin Xu, and Shiliang Sun. Multi-

view learning overview: Recent progress and new chal-
lenges. Information Fusion, 38:43–54, 2017. ISSN 15662535.

[12] Aiguo Wang, Guilin Chen, Jing Yang, Shenghui Zhao,
and Chih Yung Chang. A Comparative Study on Human
Activity Recognition Using Inertial Sensors in a Smart-
phone. IEEE Sensors Journal, 16(11):4566–4578, 2016. ISSN
1530437X.

[13] Zimin Xu, Guoli Wang, and Xuemei Guo. Sensor-based
activity recognition of solitary elderly via stigmergy and
two-layer framework. Engineering Applications of Artificial
Intelligence, 95, 2020. ISSN 09521976.

[14] Lisha Hu, Yiqiang Chen, Jindong Wang, Chunyu Hu,
and Xinlong Jiang. OKRELM: online kernelized and regu-
larized extreme learning machine for wearable-based ac-
tivity recognition. International Journal of Machine Learning
and Cybernetics, 9(9):1577–1590, sep 2018. ISSN 1868808X.

[15] Haodong Guo, Ling Chen, Yanbin Shen, and Gencai
Chen. Activity recognition exploiting classifier level fu-
sion of acceleration and physiological signals. In UbiComp
2014 - Adjunct Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing,
pages 63–66. Association for Computing Machinery, Inc,
2014. ISBN 9781450330473.

[16] Aiguo Wang, Ning An, Guilin Chen, Lian Li, and Gil
Alterovitz. Accelerating wrapper-based feature selection
with K-nearest-neighbor. Knowledge-Based Systems, 83(1):
81–91, 2015. ISSN 09507051.

[17] David Stromback, Sangxia Huang, and Valentin Radu.
Mm-fit Multimodal deep learning for automatic exercise
logging across sensing devices. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 4
(4), dec 2020. ISSN 24749567.


	Introduction
	Theory and formula
	Single-view model
	Multi-view aggregation

	Experimental setup
	Result discussions
	Conclusions

