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Early detection of hypertension contributes to the prevention and reduction of the onset of cardiovascular
diseases. Since lifestyle choices are linked to the occurrence and development of hypertension, determin-
ing hypertension risk factors and further establishing a predictive model with these factors will facilitate
the early prevention and effective management of hypertension and improve individual health condi-
tions. This study attempts to construct a prediction model based on the hybrid use of logistic regression
and artificial neural networks (ANNs) for hypertension detection in a non-invasive, questionnaire-based
way. First, the binary logistic regression model was used to select risk factors significant to hypertension.
Second, after detailing the selection of ANNs architecture and the setting of relevant parameters, we con-
structed a multi-layer perception neural network model with back propagation learning algorithms to
predict hypertension. Then, to mitigate the biased prediction results caused by a potentially unbalanced
training set, we proposed an effective under-sampling technique and adopted it to balance the dataset
prior to the training of the predictive model. To evaluate the performance of the proposed approach,
we conducted extensive experiments on the questionnaires collected from Behavior Risk Factor
Surveillance System. Experimental results show that ANN-based prediction model obtains over 72.0%
accuracy and an area under the receiver-operator curve of 0.77 and achieves good stability in comparison
with the logistic regression-based model. Further, the proposed approach obtains balanced prediction
performance with the under-sampling technique. The results demonstrate the practicability of hyperten-
sion prediction with simple demographic data rather than with clinical tests and genomic data and of
developing a hypertension surveillance system for a large scale of population in a non-invasive and eco-
nomical way. Also, we actually provide a general framework for the simultaneous identification of risk
factors and prediction of other chronic diseases.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Hypertension is a long-lasting chronic health condition and
affects a wide range of the population, particularly for adults over
the age of fifty-five. Even worse, it is becoming prevalent among
adolescents in both developing and developed countries (Ture,
Kurt, Turhan Kurum, & Ozdamar, 2005; Midha et al., 2014).
Hypertension is also a major risk factor for the occurrence and
development of many cardiovascular diseases, such as stroke, heart
failure and chronic kidney disease, and the poor management and
treatment of hypertension leads to the increase in morbidity and
mortality rates (Hsu et al., 2011; Jeppesen, Hein, Suadicani, &
Gyntelberg, 2000; Vasan et al., 2001; Wong et al., 2003). Besides
the fact that prevention and management of hypertension con-
sumes a wealth of medical resources and healthcare services, it
deteriorates the imbalanced distribution of medical resources
and definitely puts on the society a considerable financial burden.

The main difficulty associated with hypertension prevention
and management is the lack of clear clinical effects in the early
stage of hypertension. As a consequence, individuals may easily
disregard the occurrence of hypertension and develop potential
serious complications (Vasan et al., 2001). Though hypertension
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is among the most common and costly health problems, it is also
among the most preventable and can be effectively controlled
through reasonable measures due to the fact that lifestyle choices
are linked to the occurrence and development of hypertension
(Chang, Wang, & Jiang, 2011; Hsu et al., 2011; Krawczyk &
Wozniak, 2011; Sumathi & Santhakumaran, 2011; Wozniak,
2006). Therefore, investigating risk factors and identifying hyperten-
sion plays a crucial role in the effective prevention and reduction of
the onset of cardiovascular diseases as well as better management
and intervention of individual health conditions (Hsu et al., 2011).
On the other hand, the investigation of hypertension risk factors is
a crucial issue for preventive medicine and particularly drawing
interests from public health researchers with the aim to bring down
the onset of hypertension through early warning and prevention. In
comparison with clinical test data, genomic data and anthropometric
body surface scanning data (Chiu et al., 2007), lifestyle behavior
information provides an alternative way for hypertension prediction,
and they are easily collected and more meaningful in the prevention
and management of hypertension. Furthermore, lifestyle risk factors
could be indicators to remind or warn individuals to avoid or cir-
cumvent unhealthy behaviors in order to effectively prevent and
better manage hypertension, and the prediction model can be used
for locating those individuals who may be at high risk of hyperten-
sion and for the large-scale hypertension surveillance without the
complex and expensive measurements.

Traditional approaches usually statistical techniques to deter-
mine the relationship between hypertension and the risk factors.
Among these, artificial neural networks (ANNs) are data-driven
methods and have the ability to adjust themselves to the data
without positing any explicit specification of distribution form
for the underlying model. This differs from traditional statistical
procedures that are established on Bayesian statistical theory. As
a nonlinear mapping model, ANNs are flexible and effective in
modeling complex relationships between inputs and outputs and
widely used for the medical diagnostics (Ziada et al., 2001).
However, one of the main difficulties in constructing neural net-
works is the model selection problem. More precisely, one needs
to select a suitable ANNs architecture and set its corresponding
parameters due to the fact that ANNs are quite sensitive to these
factors and inappropriate model selection can degrade their gener-
alization ability.

With the aim to enable early identification of hypertension and
risk factors and develop a practical screening tool, in this study,
we proposed a questionnaire-based hypertension prediction
approach that integrated logistic regression analysis and artificial
neural networks with the aim of determining risk factors and pre-
dicting hypertension. After collecting and cleaning a publicly avail-
able dataset from Behavior Risk Factor Surveillance System (BRFSS)
of Centers of Control and Prevention (CDC), we first applied the bin-
ary logistic regression model to select risk factors significantly rele-
vant to hypertension and constructed the logistic regression-based
prediction model. Then, we trained a multi-layer perception (MLP)
neural network with back propagation algorithms using the selected
risk factors as inputs to predict whether an individual suffers from
hypertension. In the construction and training of ANNs, we detailed
the selection of ANNs architecture and proposed to employ three
rule-of-thumbs to narrow down the search space of feasible solu-
tions towards a tradeoff between efficiency and accuracy.
Additionally, considering that class imbalance problems are common
in medical datasets and that the skewed class distribution makes
many classification methods less effective and jeopardizes the accu-
racy of the minority class (Wang & Yao, 2012), we proposed an effec-
tive under-sampling technique to adjust the size of training sets
prior to the training of ANNs.

The remainder of this paper is organized as follows. Section 2
reviews previous related research work and techniques.
Experimental dataset, logistic regression analysis and artificial
neural network models are illustrated in Section 3. In the experi-
mental design and result analysis section, we detail the selection
of neural network architectures and the setting of corresponding
parameters, and describe an experiment to demonstrate their
effectiveness for hypertension prediction in comparison with that
of logistic regression based prediction model. The last section con-
cludes our work with a brief summary and presents possible direc-
tions for the future studies.

2. Related work

A large number of researchers and medical experts have con-
ducted considerable work in investigating hypertension risk fac-
tors and indicators and constructing effective prediction models
with these factors. There are a variety of factors that can be used
to predict hypertension, mainly including demographics, anthro-
pometry body surface scanning data, clinical test data and even
molecular-level data (e.g. genomic and proteomic data). To figure
out the risk factors, Lee and Entzminger (2006) conducted a
cross-sectional study in a Thai population of 1398 patients (382
men and 1016 women), and performed multiple linear regression
to determine the relevance of several risk factors for hypertension.
They found that old age, body mass index and low education
attainment are significant risk factors. Akdag et al. (2006) applied
the classification tree method to determine risk factors for hyper-
tension among 1761 adults at the outpatient clinic in western
Turkey between January 2002 and July 2004. They studied the
effects of fourteen risk factors on hypertension, and their results
revealed that body mass index, waist-to-hip ratio, sex, serum
triglycerides, serum total cholesterol, hypertension in first-degree
relatives, and saturated fat consumption are main risk factors.
Accordingly, various machine learning and statistical analysis tech-
niques with different metrics are utilized to find a mapping func-
tion between the factors and hypertension. Ture et al. (2005)
compared a comparative study to evaluate the performance of nine
commonly used classification methods for hypertension prediction
among 694 subsets (452 hypertension patients and 242 controls).
Their experimental dataset consisted of demographics, lifestyle
information and clinical test results. Experimental results revealed
that multi-layer perception (MLP) neural network and Radial Basis
Function (RBF) neural network outperformed the other three deci-
sion tree and four statistical algorithms. Blinowska, Chatellier,
Bernier, and Lavril (1991) proposed to apply Bayesian statistical
methods that incorporated both prior knowledge and possible
costs of wrong decisions for hypertension prediction using demo-
graphics and clinical test data, and the proposed method achieved
satisfactory accuracy. However, since Bayesian method is built on
statistical theory, difficulties in collecting a sufficient number of
experimental cases and ensuring the integrity of each case hinder
its wide applications in actual use (Blinowska, Chattellier,
Wojtasik, & Bernier, 1993; Blinowska et al., 1991). Chang et al.
(2011) proposed to use several data mining classifier techniques
to determine the risk factors of hypertension in a vote-based
scheme, and then build a predictive model using multivariate
adaptive regression splines. Besides using clinical test data,
researchers also explore the possibility of hypertension prediction
using other types of data. For example, Hsu et al. (2011) focused on
determining the relationship between hypertension and
three-dimensional anthropometric scanning data (e.g. the circum-
ferences of waist, wrist and gluteal), and they proposed to hybri-
dize case-based reasoning and genetic algorithms for
hypertension detection. Experimental results revealed the rela-
tionship between anthropometric data and hypertension and
demonstrated the effectiveness of case matching techniques. In
addition, to investigate the mechanism of hypertension at the



Table 1
Description of variables of experimental data.

No. Variable Variable description Coding in our work

1 AGE ‘Age’ Age
2 SEX ‘Sex’ Sex
3 HEIGHT ‘Height in inches’ Height
4 WEIGHT ‘Weight in pounds’ Weight
5 MARITAL ‘Marriage status’ Marriage
6 EDUC ‘Education level’ Education
7 INCOME ‘Income level’ Income
8 EXERANY ‘Exercises during the past month’ Exercise
9 DIABETES ‘Ever told having diabetes’ Diabetes

10 TOLDHI ‘Ever told blood cholesterol high’ Hyperlipemia
11 SMOKE100 ‘Smoke more than 100 in total’ Smoke100
12 SMOKEDAY ‘Smoke frequency now’ Smoke
13 ALCDAY ‘Drink frequency’ Drink
14 BPHIGH ‘Ever told blood pressure high’ Hypertension
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molecular level, Caulfield et al. (2003) conducted a study to iden-
tify genetic factors associated with hypertension. Kesselmeier et al.
(2014) used data from the Genetic Analysis Workshop 18 to evaluate
the performance of the standard logistic regression methods, and
found their strong dependence on a few observations that deviated
from the majority of the data. Huang, Xu, and Yang (2014) developed
a two-stage hypertension prediction approach using the genotype
information. They first detected significant single-nucleotide poly-
morphisms (SNPs) and then developed a permanental classifier for
prediction purposes. Sanada et al. (2015) conducted a study using
statistical tests in a Japanese population with 588 hypertensive indi-
viduals and 486 normotensive controls, and their study showed that
non-synonymous GRK4 variants are associated with essential hyper-
tension. Their work provides us novel insights into the study of
pathogenesis mechanisms, the prediction of hypertension, as well
as the discovery of potential therapeutic targets.

Though great progresses have been made in hypertension pre-
diction, however, there exist several difficulties and limitations of
current methods to be widely applied for hypertension prevention
and management in actual use. First, predicting hypertension with
clinical test data, anthropometric body surface scanning data and
genomic data obtains high prediction performance, but it is not
suitable and practical for hypertension prediction in a large popu-
lation due to the fact that it involves complex operation processes
and costs much and that few individuals are willing to take clinical
tests. Second, clinical test data and genomic data are good indica-
tors for hypertension prediction, but they present less information
about hypertension risk factors that can be of great value for the
early prevention and better management of hypertension. On the
contrary, lifestyle behaviors are easily collected and provide mean-
ingful insights into hypertension prevention and management.
Third, due to lack of clear clinical effects in the early stage of hyper-
tension, individuals may easily disregard the occurrence of hyperten-
sion and develop potential serious complications (Vasan et al., 2001).
Fourth, predicting hypertension with risk factors is a challenging task,
since inappropriate model selection and unbalanced class distribu-
tion may deteriorate the accuracy. Studies showed that ANNs can
obtain satisfactory prediction performance and outperform many
other classification methods, while few presented detailed discus-
sions of the selection of ANNs architecture and the setting of corre-
sponding parameters towards a tradeoff between efficiency and
accuracy. Besides the model selection issue, class imbalance problem
often emerges in medical datasets and usually leads to a learning bias
of the constructed classifier to the majority class. Unfortunately,
hypertension prediction is such a case because the number of hyper-
tension cases (called minority class or positive class) is usually much
smaller than the number of controls (called majority class or negative
class) (Wang & Yao, 2012). For example, suppose there is a data set
and the ratio between the number of majority class samples and
the number of minority class samples is 100:1. An accuracy-driven
classifier that aims to maximize the final classification accuracy
may obtain an accuracy of 99% by ignoring the minority class sam-
ples and predicting all instances as majority class. Obviously, it is
not acceptable in actual use. Based on the discussions above, to
enable early-stage effective prevention and later-stage better man-
agement of hypertension in an efficient and economical way, we pro-
pose to predict hypertension with the collected questionnaires and
further explore the model selection problem.

3. Materials and methods

3.1. Dataset and hypertension risk factors

The dataset used in our study was collected from the Behavior
Risk Factor Surveillance System (BRFSS) of Centers for Disease
Control and Prevention (CDC) and is publicly available and
downloadable from the BRFSS website. BRFSS is the world’s largest
and continuously conducted telephone-based health survey
regarding behavioral risk factors, chronic health conditions and
use of preventive services. Established in 1984 with 15 states par-
ticipating in the survey, it has a long history in behavioral and
chronic disease surveillance. The primary aim of BRFSS is to track
and measure individual health conditions and risk behaviors that
contribute to the leading cause of high morbidity and mortality
rates in the adult population who are aged 18 years and the elderly
in United States. The survey covers a wide range of health risk fac-
tors, preventive health practices and health conditions, including
hypertension, diabetes and carcinoma related items. By collecting
a variety of information and sharing them to the public, BRFSS
enables researchers to investigate the relationships between
chronic diseases and their risk factors (Mokdad et al., 2003;
Oswald & Hu, 2010). Additionally, U.S. government can rely on
BRFSS data to compare states to allocate funding and focus inter-
ventions, and the states can use the survey results to focus inter-
ventions for the public and make better policies. A working
group of BRFSS coordinators and CDC staff is in charge of the design
of BRFSS survey. Currently, BRFSS questionnaires have three parts:
the core components, optional modules and state-added questions.
The core component consists of a core set of questions on certain
topics like hypertension, exercise or tobacco use and must be asked
without modification, while the modules are optimal and
state-added questions are designed by each state and may differ
among states. The BRFSS system records the reply of every investi-
gated individual to each question. In our study, the diagnosis of
hypertension is made when an individual answers yes to the ques-
tion that ‘‘have you ever been told by a doctor, nurse or other
health professional that you have high blood pressure?’’.
Similarly, researchers can check other survey items. BRFSS official
website provides relevant questionnaires and coding forms to help
researchers better understand and exploit the data.

According to the survey items in BRFSS and the potential hyper-
tension risk factors used by many researchers as discussed in the
introduction section, we picked out 13 survey items as the candi-
date risk factors. Table 1 presents the variable names coded in
BRFSS, their corresponding meanings, and their coding names used
in our study. Independent variables include age, sex, height,
weight, marriage, income, Hyperlipemia, diabetes, exercise, educa-
tion, smoke100, smoke and drink. Particularly, Marriage refers to
the one’s marriage status and there are six possible values for
choosing; Education is defined as the highest grade or year of
school one completed, and six choices are provided; Income means
one’s annual household income level with eight options provided;
Smoke represents the smoke frequency (every day, some days or
not at all) and the remaining risk factors are Boolean variables
except age, height and weight with real numbers. After excluding
cases with missing values, we collected 308,711 samples from



Table 2
Main characteristics of experimental data.

Variable Hypertension
(n = 108,260)

Control
(n = 200,511)

Age (years) 59.8 ± 13.4 49.3 ± 14.8
Sex (female/male) 1.0 1.3
Height (inches) 520.4 ± 37.9 520.4 ± 37.0
Weight (pounds) 186.3 ± 44.7 169.7 ± 39.3
Exercise (%) 70.0 80.0
Diabetes (%) 97.7 85.9
Hyperlipemia (%) 60.0 30.0
Smoke (everyday: someday: no) 3.5: 1.0: 9.0 3.1: 1.0: 5.2
Drink (%) 50.0 60.0
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the year of 1996–2005. Each sample consists of with 13 indepen-
dent variables and the target variable. The main characteristics of
the experimental data are shown in Table 2. We can observe that
there are 108,260 hypertension samples and 200,511 controls,
which indicates that the class imbalance problem occurs.

3.2. Logistic regression analysis

Logistic regression is a type of statistical regression analysis
model, and has the capacity to measure the relations between a
categorical dependent variable and one or more independent vari-
ables, thus, it has been extensively used in numerous disciplines
such as the medical and social science fields (Hosmer, Lemeshow,
& Sturdivant, 2013). According to the number of possible values of
the dependent variable, we can categorize logistic regression mod-
els into binary or multinomial models. In the binary logistic regres-
sion model, the values of the dependent variable are usually coded
as zero and one to denote the two different outputs. In the case of
hypertension, logistic regression models compute the probability
of hypertension y (y = 1 if an individual suffering from hyperten-
sion; otherwise, y = 0) as a function of the risk factors.
Specifically, through computing two conditional probabilities
p(y = 1|X) and p(y = 0|X), where X = (x1,x2, . . .,xn) represents n risk
factors that are associated with the hypertension, we can obtain
the likelihood that one is at risk of hypertension. The binary logistic
regression model usually takes the following form.

log
pðXÞ

1� pðXÞ

� �
¼ b0 þ b1 � x1 þ b2 � x2 þ . . .þ bn � xn; ð1Þ

where X = (x1,x2, . . .,xn) represents the vectors of n risk factors deter-
mined by logistic regression analysis. bi represents the coefficient of
corresponding xi (1 6 i 6 n). Then, we can rewrite it as

pðyjXÞ ¼ 1= 1þ exp � b0 þ b1 � x1 þ b2 � x2 þ . . .þ bn � xnð Þð Þð Þ: ð2Þ

After determining a suitable threshold delta, we infer that one is
at risk of hypertension if p(y = 1|X) > delta. Besides these, logistic
regression analysis is endowed with the capacity to select variables
that are statistically significant to hypertension. In our study, bin-
ary logistic regression analysis is applied not only to select risk fac-
tors that are significant to hypertension, but also to build up a
prediction model. Further, the selected risk factors are directed to
a well-constructed neural network to improve the performance of
logistic regression-based prediction model.

3.3. Multilayer perceptron neural network

As a nonlinear mapping model, ANNs are flexible and effective
in modeling complex relationships between inputs and outputs.
The effectiveness and flexibility of neural networks to solve classi-
fication and regression problems has been empirically validated in
handwriting recognition (Knerr, Personnaz, & Dreyfus, 1992),
speech recognition (Lippmann, 1989), and medical diagnosis
(Amato et al., 2013; Chan, Ling, Dillon, & Nguyen, 2011). The typi-
cal processing procedure of an artificial neural network takes the
following scheme. First, a set of input neurons are activated by
the inputs, the activations of these neurons are then weighted,
transformed and passed on to other neurons until the output neu-
rons are activated and output the final results.

Multi-layer perception (MLP) neural networks are one of the
most commonly used static neural networks (Vellido, Lisboa, &
Vaughan, 1999). MLP are feed-forward neural networks that are
trained with the back propagation (BP) algorithm, and utilize super-
vised learning techniques to transform input data into a desired
response. Adopting the iterative gradient optimization algorithm,
BP is trained with a generalized delta learning rule to obtain a model
with high accuracy by minimizing the root mean square error
between the actual outputs and desired outputs. The BP algorithm
can be divided into two phases: propagation and weight update. In
MLP, each layer is fully connected to the previous layer and there
is no connection within the same layer. After completing the training
procedure, we can obtain the weights on each edge and use them to
test unseen samples. Algorithm 1 presents the pseudo-code of MLP.
In our study, we employed MLP to explore the relation between the
occurrence of hypertension and the risk factors and further opti-
mized the hypertension prediction model.
Algorithm 1: Neural network learning with the back
propagation algorithm

Input:
 N train samples, with inputs x(1),x(2), . . .,x(N) and

corresponding desired output y(1),y(2), . . .,y(N),
where x(i) = (x1(i),x2(i), . . .,xk(i)) is a vector with k
features, 1 6 i 6 N
Output:
 NN: a neural network

1:
 Initializing network weights and biases to small

random values

2:
 Inputting a study sample (x(p),y(p)), (1 6 i 6 N)

3:
 Calculating the actual output of nodes in the hidden layer:

Y2
j ¼ f

Xn1

i¼1

Wij � Y1
i � bj

 !

¼ f
Xn1

i¼1

Wij � Xip � bj

 !
; j 2 f1;2; . . . ;n2g ð3Þ

Calculating the actual output of nodes in the output
4:

layer:

ok ¼ f
Xn2

i¼1

Wjk � Y2
j � bk

 !
; k 2 f1;2; . . . ;mg ð4Þ
5:
 Adapting weights Wij and biases bi, using Eqs. (5) and (6):

DwðlÞij ¼ l � xj � dðlÞi ; ð5Þ
DbðlÞi ¼ l � dðlÞi ; ð6Þ
where l is learning rate, xjðnÞ is the output of node j
at the iteration n.

dðlÞi ðnÞ ¼
u0 netðlÞi

� �
� ðyi � oiÞ; l ¼M

u0 netðlÞi

� �
�
X

k

wki � dðlÞk ; 1 6 l < M

8><
>:

9>=
>;;
ð7Þ
where l is the layer, M is output layer, k is the
number of output nodes.
6:
 If left study sample, goto step 2.

7:
 Calculating error function E, if E satisfying, stop; else,

goto step 2.
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3.4. K-means algorithm

The aim of a clustering algorithm is to group a set of objects into
several clusters so that objects in the same cluster are more similar
to each other than to objects in other clusters. Among the various
metrics, Euclidean distance is commonly used to measure the sim-
ilarity between two instances. Given two variables X and Y with N
numeric attributes, the similarity between X and Y is defined as

dðX;YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
Xi � Yið Þ2

r
: ð8Þ

The K-means cluster is a simple but powerful algorithm and has fast
convergence in actual use (MacQueen, 1967). K-means algorithm
works in the following way: (1) it first randomly designates K
objects as the initial cluster center, and calculates the similarity
between each object and the K cluster centers; (2) it puts each
object into the closest cluster, re-calculates the centroid of the
newly formed clusters and substitutes previous clusters with them;
(3) repeat the second step until no change occurs to any cluster. In
our study, to circumvent the biased results caused by the class
imbalance problem, we proposed an under-sampling technique
built on K-means algorithm to balance the experimental data.

3.5. Evaluation measures

In the evaluation of a classifier, a confusion matrix contains the
actual outputs and predicted outputs of a classifier, and is applica-
ble to evaluate the classification performance (Provost & Kohavi,
1998). Table 3 presents the confusion matrix for hypertension pre-
diction. To evaluate the performance of the proposed prediction
model, we used the following four measures. The higher accuracy,
sensitivity, specificity and AUC are, the better the proposed predic-
tion model.

(1) Accuracy is defined as the total accuracy rate of classifying
each case correctly. Accuracy is an index that can present
the power of a model in correctly predicting an individual’s
health condition.

Accuracy ¼ ðTP þ TNÞ=ðTP þ FP þ TN þ FNÞ: ð9Þ

(2) Sensitivity refers to the probability of correctly predicting an
individual at risk of hypertension. A higher sensitivity indi-
cates that the model can easily detect hypertension.

Sensitivity ¼ TP=ðTP þ FNÞ: ð10Þ

(3) Specificity represents the probability of correctly determin-
ing that an individual has no hypertension.

Specificity ¼ TN=ðTN þ FPÞ: ð11Þ

(4) The area under the ROC curve (AUC) presents the probability
that a classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative instance
(Bradley, 1997). An area of one represents a perfect classifi-
cation, while an area of 0.5 represents a worthless model.
The AUC is equivalent to the Mann–Whitney–Wilcoxon
sum of ranks statistic and estimated using the following for-
mula (Vila-Francés et al., 2013).
Table 3
Confusion matrix for hypertension prediction.

Class predicted Real situation

Hypertension Normal

Hypertension TP FP
Normal FN TN
AUC ¼ s� ðpos� ðposþ 1Þ=2Þ
pos� neg

; ð12Þ

where s is the sum of ranks of true hypertension cases, pos denotes
the number of hypertension cases, and neg denotes the number of
controls.
4. Experimental design and results

In this section, we detailed the experimental design and pre-
sented corresponding results. To determine hypertension-
associated risk factors and establish a prediction model with these
factors, we first utilized binary logistic regression analysis on the
collected dataset to select variables that were significant to hyper-
tension according to the statistically significant p-value. We then
built up an ANN-based prediction model with these factors as
inputs. As a comparison to the prediction performance obtained
by neural networks, we presented the experimental results of
logistic regression-based prediction model as well. Furthermore,
to mitigate the class imbalance problem, we applied the proposed
under-sampling technique to balance the experimental data prior
to the training of the prediction model, and experimentally vali-
dated it.
4.1. Significant risk factors for hypertension

Logistic regression analysis has the capacity to function as a
prediction model and to determine significant factors. In order to
select the significant risk factors, a multi-factor logistic regression
model with maximum likelihood estimation and forward-step
regression analysis was applied. Consequently, eleven
hypertension-relevant risk factors (exercise, diabetes, hyper-
lipemia, age, marriage, education, income, weight, height, sex,
smoke, drink) were selected as significant ones, and two factors
(smoke100, smoke) were filtered out when setting statistical sig-
nificance p-value less than 0.05 as variable inclusion criteria and
p-value greater than 0.1 as variable exclusion criteria. Table 4 pre-
sents corresponding results, where B denotes the coefficients of
each variable in the logistic regression-based prediction model.
After investigating the distribution of each variable of the dataset,
we found that variable ‘‘smoke100’’ only had one value, so it was
not involved in the regression analysis.
4.2. Artificial neural network-based prediction model

ANNs typically consist of one input layer, one output layer, zero
or more hidden layers and a collection of neurons with connectiv-
ity between layers. Generally, the architecture of ANNs is deter-
mined by the number of inputs n and outputs m, the number of
hidden layers and the number of neurons h in each hidden layer.
In our study, we set n equal to eleven since there are eleven risk
factors, and use two nodes to represent the outputs. On the basis
of Kolmogorov theorem, theoretical analysis proves that
feed-forward neural networks with single hidden layer have the
capacity to approximately denote any continuous function and
achieve arbitrary nonlinear mapping (Chen, Chen, & Liu, 1995;
Kolmogorov, 1957). Due to the fact that the training time of a neu-
ral network model increases with the number of hidden layers, in
our study, ANNs with single hidden layer are adopted towards a
tradeoff between accuracy and time performance. In determining
the number of neurons h in the hidden layer, three
rules-of-thumb were used to reduce the search space rather than
using a grid-based or exhaustive search scheme to search for the
best-fitting value of h.



Table 4
Multi-factor logistic regression analysis for hypertension.

Variable B Wald P-value Odd ratio (95% CI)

Exercise �0.130 177.438 <10�3 0.878 (0.861–0.895)
Diabetes 0.350 2616.923 <10�3 1.420 (1.401–1.439)
Hyperlipemia 0.748 7650.724 <10�3 2.112 (2.077–2.148)
Age �0.046 18513.797 <10�3 0.955 (0.955–0.956)
Marriage �0.013 15.459 <10�3 0.987 (0.981–0.993)
Education 0.046 103.814 <10�3 1.047 (1.038–1.056)
Income 0.076 925.898 <10�3 1.079 (1.073–1.084)
Weight �0.011 8795.350 <10�3 0.989 (0.988–0.989)
Height 0.003 453.368 <10�3 1.003 (1.003–1.003)
Sex �0.058 32.369 <10�3 0.944 (0.925–0.963)
Smoke 0.006 1.219 0.270 1.006 (0.996–1.016)
Drink �0.034 13.974 <10�3 0.967 (0.950–0.984)

Table 5
A summary of the parameters of ANNs.

Parameter Symbol Value

Number of inputs n 11
Number of outputs m 2
Number of neurons in hidden layer h [8,9,10,11]
Activation function of hidden layer hid_func Tanh
Activation function of output layer out_func Tanh
Learning rate l 0.4
Momentum mc 0.9
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(1) Blum suggested that the number of neurons in the hidden
layer should be limited between the number of inputs and
outputs (Blum, 1992).

m 6 h 6 n: ð13Þ

(2) Boger and Guterman pointed out that the number of neu-
rons in the hidden layer should be more than two thirds of
the number of inputs (Boger & Guterman, 1997).

h P
2
3
� n: ð14Þ

(3) Berry and Linoff suggested that the number of neurons in the
hidden layer should be less than twice the number of inputs
for circumventing high computation (Berry & Linoff, 1997).

h 6 2 � n: ð15Þ

Considering the three constraint conditions simultaneously, we
derived that the number of neurons h should be chosen between
eight and eleven in our study.

In choosing activation functions, Karlik and Olgac (2011) con-
ducted a comparative study and evaluated the performance of five
MLP neural networks with different conventional activation func-
tions, including Bi-polar sigmoid, Uni-polar sigmoid, Hyperbolic
Tangent (Tanh), Conic Section, and Radial Bases Function (RBF).
They concluded that the activation function Tanh performed better
in the vast majority of MLP applications (Karlik & Olgac, 2011; Tan,
Teo, & Anthony, 2011). Directed by their work, we chose tanh as
the activation function in the hidden layer and output layer.

In addition, we adopted the back propagation algorithm with
learning rate l and momentum mc to achieve faster convergence
with minimum oscillation, and assigned empirical values to the
two parameters. According to the discussions above, parameters
of the proposed prediction model and corresponding values were
summarized and presented in Table 5. Furthermore, on the basis
of the discussion of the neural network architecture, Fig.1 presents
the constructed hypertension prediction model. In the input layer,
there are eleven variables that are obtained using the binary logis-
tic regression analysis; in the output layer, there are two output
nodes to denote hypertension and normal; the number of neurons
in the hidden layer ranges from eight to eleven.

4.3. Experimental results and analysis

To evaluate the performance of the proposed approach and
compare it with the logistic regression-based prediction model,
we randomly partitioned the experimental dataset into a training
set and a test set in the ration of 7:3. The training set was used
to optimize model parameters and construct the prediction model,
while the test set was
used to evaluate the model. In our study, the initial parameter
values for the neural network prediction model were listed in
Table 5, and the value of training period varied from 100,000 to
2,000,000. As a comparison, the logistic regression-based predic-
tion model was built up using Eq. (2), and its coefficients were
obtained using the logistic regression analysis and shown in
Table 4. In determining hypertension, 0.5 was taken as the thresh-
old. We inferred that the subject suffered from hypertension if the
predicted value was greater than 0.5; otherwise, we predicted that
the individual did not have high blood pressure. We ran each
experiments ten times and recorded the averaged results and stan-
dard deviations with the varying number of neurons in the hidden
layer. Table 6 presented the experimental results of the proposed
approach and its contrast.

From the experimental results in Table 6, we can observe that
the artificial neural network-based approach obtained an average
prediction accuracy ranging from 71.91% to 72.12% and an average
AUC of 0.77 with h vary from 8 to 11. And the best prediction accu-
racy was found up to 72.12% when the number of neurons was
equal to 11. Senior physicians suggest that 30.0% is an acceptable
error rate for the diagnosis of hypertension (Blinowska et al.,
1991). Namely, prediction accuracy over 70.0% is useful, which
indicates the effectiveness of our proposed neural network-based
prediction model. We can also observe that logistic regression-
based prediction model obtained 71.96% accuracy. Though its
results were very close to that of neural network-based model, it
had larger standard deviations. In contrast, neural network-based
model achieved better accuracy and comparatively small standard
deviations when h was equal to 11. This indicates that the neural
network-based method have better stability and robustness than
logistic regression-based model, and that neural network-based
method is more powerful in adjusting itself to new environments
and more suitable to model the complex relations between vari-
ables in real world applications. In terms of AUC, logistic
regression-based approach obtained an AUC of 0.74, which was less
than 0.77 achieved by neural network-based approach. This further
demonstrated the superiority of neural networks in hypertension
prediction.

Notably, we can observe from Table 6 that there is a great dif-
ference between the value of sensitivity and specificity.
Specifically, the probability of correctly determining that the sub-
ject does not have hypertension is twice the probability of cor-
rectly classifying that one suffers from hypertension. This is
mainly caused by the class imbalance problem, that is, the number
of instances belonging to one class is much larger than the ones of
other classes. Consequently, constructing a classifier with all the
data is generally biased towards the majority class in order to
obtain higher accuracy (Fernández, López, Galar, José del Jesus, &
Herrera, 2013; Tahir, Kittler, & Yan, 2012). From Table 2, we can
see that the number of controls is twice the number of hyperten-
sion cases, and this explains why specificity is much larger than
sensitivity.

To circumvent the imbalanced sample issue, we proposed an
effective under sampling technique built on K-means to balance
the dataset. The proposed algorithm mainly consists of three steps



Fig. 1. An artificial neural network-based hypertension prediction model.

Table 6
Prediction results of neural network and logistic regression.

Model Sensitivity (%) Specificity (%) Accuracy (%) AUC

Artificial neural network h = 8 49.20 ± 3.53 84.37 ± 1.73 72.04 ± 0.22 0.77 ± 0.002
h = 9 48.69 ± 1.59 84.69 ± 0.80 72.06 ± 0.07 0.77 ± 0.002
h = 10 46.85 ± 5.59 85.42 ± 2.25 71.91 ± 0.43 0.77 ± 0.003
h = 11 48.91 ± 1.22 84.62 ± 0.68 72.12 ± 0.04 0.77 ± 0.001

Logistic regression 44.68 ± 5.17 86.42 ± 2.66 71.96 ± 0.21 0.74 ± 0.001

Table 7
Prediction results of neural networks on balanced dataset.

Neurons in
hidden layer

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

AUC

h = 8 72.90 ± 1.12 67.87 ± 1.05 70.37 ± 0.07 0.77 ± 0.001
h = 9 71.39 ± 2.60 69.03 ± 1.84 70.19 ± 0.39 0.77 ± 0.004
h = 10 72.37 ± 1.38 67.96 ± 0.79 70.16 ± 0.49 0.77 ± 0.006
h = 11 72.76 ± 0.69 67.96 ± 0.61 70.34 ± 0.07 0.77 ± 0.001
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(see Algorithm 2). First, K-means algorithm is applied to group the
majority class samples into K clusters. Then, for each cluster, calcu-
late the Euclidean distance between each sample in the cluster and
the minor class samples and sort these samples in ascending order.
Finally, select majority class samples from each cluster by propor-
tion of the size of each cluster, and combine all these selected
majority class samples with the minor class samples to form the
final balanced dataset.
Algorithm 2. Under-sampling technique using K-means

Input:
 D: imbalanced dataset, K: number of clusters

Output:
 D’: balanced dataset

1:
 Extracting positive class samples P and negative

class samples N. |N|: number of negative class
samples, |P|: number of positive class samples.
2:
 Applying K-means algorithm to group N into K
clusters: C1,C2,. . .,Ck. |Cj|: size of each cluster,
1 6 j 6 K.
3:
 For j = 1 to K

For each sample Xh in Cj (1 6 h 6 |Cj|), calculating its
Euclidean distance to P: dist(Xh,P).

Sorting dist(Xh,P) in ascending order.

Selecting C0j samples from Cj by proportion. The size

of C0j is |C0j| = (|Cj|/|N|) ⁄ |P|, and selecting jC0jj with
smaller dist(Xh, P).
4:
 Merging all C0j into a set N’.

5:
 Combining P and N’ to form a new dataset D’.
In our study, we set the number of clusters to be fifteen, and then
applied the proposed under-sampling technique to obtain a bal-
anced experimental dataset. Similar to the above experimental set-
tings, we partitioned the balanced dataset into a training set and a
test set in the ratio of 7:3 with the training period varying from 100,00
to 2,000,000. We also conducted the experiments ten times and
reported the average results and their standard deviations of sensitiv-
ity, specificity, accuracy and AUC. Table 7 presented the experimental
results. We can observe that it can greatly improve the sensitivity to
72.0% from 48.0%, and that the difference between sensitivity and
specificity was reduced, which demonstrated the effectiveness of the
proposed under-sampling technique. In medical diagnosis, sensitivity
is associated with Type I Error and specificity is associated with Type
II Error. Type II Error b represents the probability of classifying healthy
subjects into hypertension group, and b is equal to 1-specificity. In
hypertension prediction, this error is acceptable because wrongly clas-
sifying healthy individuals into hypertension group will draw their
attentions to hypertension and potential risk factors. Moreover, we
can still obtain an accuracy over 70.0% and an AUC of 0.77.
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5. Conclusion

Predicting hypertension with clinical test data, anthropometric
data or genetic data generally obtains better accuracy, but these
types of data are indicators for hypertension prediction and pro-
vide us less information about risk factors. Due to the fact that life-
style choices are linked to the occurrence and development of
hypertension, therefore, determining hypertension risk factors
and further establishing a predictive model will contribute to the
early prevention and effective management of hypertension. In this
study, we proposed to predict hypertension in a non-invasive way
using the simple demographics recorded in questionnaires rather
than using clinical or genetic data. The proposed approach mainly
consists of three parts. First, the binary logistic regression was used
to determine risk factors that are significantly relevant to hyper-
tension. Second, a well-defined neural network was constructed
and optimized for hypertension prediction. Last, to improve the
biased classification performance, we proposed an effective
under-sampling technique prior to the training of prediction
model. To show the effectiveness of the proposed approach, we
included logistic regression-based prediction model as a compar-
ison, and conducted experimental comparisons on the publicly
available BRFSS datasets in terms of sensitivity, specificity, accu-
racy and AUC. Experimental results show that the proposed
approach can obtain more than 72.0% accuracy and 0.77 AUC,
and is applicable to hypertension prediction.

In particular, the main contributions of our study mainly
include the following four aspects. (1) We propose to predict
hypertension only using the questionnaires other than clinical test
data, anthropometric data or genetic data. Its effectiveness demon-
strates the practicability of developing a hypertension surveillance
system for a large scale of population in a non-invasive and eco-
nomical way. And the results from this study may be used to guide
the development of programs geared towards preventing and mit-
igating specific hypertension risk factors. (2) We propose to inte-
grate logistic regression analysis and artificial neural networks
for simultaneous risk factor selection and hypertension prediction.
Though we only consider hypertension as a study case in this
paper, the proposed approach is essentially a general framework
that can facilitate researchers to analyze other chronic diseases
and other types of data. (3) We detail the selection of artificial neu-
ral network architecture and the setting of relevant parameters,
which is a difficult and challenging task in model learning. This
can potentially relieve researchers of the complex model selection
issue and enable them to focus on the problems under investiga-
tion. (4) To deal with the class imbalance problems, we propose
an effective under-sampling technique. Built on a cluster algorithm
and selecting the representative samples from each cluster in the
proportion of the cluster size, the proposed method can select
the most discriminative samples from the majority class while
causing us to lose the least amount of information.

For the future work, we plan to work in the following lines.
First, although we tested the effectiveness of the proposed
approach merely on questionnaires, it is a general framework that
can applied to other situations. Thus, one of the future works
involves applying the proposed approach to predict other chronic
diseases (e.g. diabetes and asthma) as well as to analyze other
types of data such as clinical data and anthropometric data for
hypertension prediction. Second, model selection greatly influ-
ences the finally obtained prediction performance. We then plan
to explore other strategies to construct the architecture of artificial
neural networks and compare it with the proposed one in this
study. Third, to obtain a balanced dataset with the discriminative
majority class samples, we used K-means clustering algorithm,
which requires us to designate the number of clusters to be
obtained. So we plan to explore other self-determined cluster algo-
rithms such as DBSCAN and CURE to automate the proposed
method. Finally, working on the imbalanced dataset, most classifi-
cation methods tend to bias towards the majority class, as is the
case of hypertension prediction in this study. Therefore, how to
effectively deal with the class imbalance problem remains another
topic for future research.
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