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ABSTRACT The existence of missing values in microarray data inevitably hinders downstream biological
analyses that expect complete data as input, therefore how to effectively explore the underlying structure
of data to accurately estimate missing entries remains crucial and meaningful. In this study, we formalize
the problem under a regularized sparse framework and accordingly propose local learning-based imputation
models to capture the relationships that are hidden in gene expression profiles towards better imputation.
Specifically, in view of the simultaneous variable selection and grouping effect of the elastic net penalty,
we present an elastic net regularized local least squares-based imputation method to estimate the missing
entries of a target gene with its neighbors. Besides, we investigate different similarity filtering metrics to
select neighbor genes and develop another four imputation methods under the framework. Furthermore, the
proposed methods process the target genes in ascending order of their associated missing rates. Finally,
extensive comparative experiments against other eight commonly-used methods are conducted on multiple
microarray datasets having varying missing rates. Results indicate the power of sparse regularization
techniques and the superiority of elastic net over its competitors in terms of statistical analysis metrics.

INDEX TERMS Microarray data, missing value imputation, local structure, penalty.

I. INTRODUCTION
It has been known to us that DNA microarray technology
provides researchers a high-throughput way to efficiently
obtain the gene expression levels of a certain disease from dif-
ferent environments, subjects, tissues, and cell cycles and that
microarray data analysis greatly facilitates the identification
of disease genes and the diagnosis of cancers and tumor sub-
types [1], [2]. Accordingly, researchers have utilized a wealth
of statistical analysis andmachine learningmodels (e.g., clas-
sification, clustering, feature selection, network analysis, and
causal inference) to analyze gene expression profiles towards
understanding the underlying biological mechanisms [3], [4].
However, both human and non-human factors, including, but
not limited to, false positive PCR, inappropriate use of test
chips, impurity of chip surface, and insufficient resolution
of fluorescent images, can result in gene expression profiles
with missing entries [5]. Previous studies indicate that most
microarray datasets have different degrees of incompleteness
that reach fifty percent and even up to ninety-five percent [6].
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On the other side, a large number of data analysis models take
as input a complete dataset, so the existence ofmissing entries
inevitably impedes downstream biological analyses [7], [8].
Obviously, repeating experiments is a direct way to obtain
complete gene expression profiles. However, the complex
experimental procedure and no guarantee of returning a sam-
ple without any missing value via multiple replicates prevent
it from being a priority in a practical setting [8], [9]. Besides,
removing the genes with missing entries is a trivial solution,
which seriously suffers from substantial loss of information.
It is even worse if the discarded genes are potential biomark-
ers. In addition, we can simply replace the missing entries
with zeros, ones, or average of the observed values of a gene
or a sample [5]. Despite easy and efficient implementation,
these methods tend to return estimations that largely deviate
from the true values, as they ignore the valuable structure
information latent in the dataset (e.g., the covariance struc-
ture and gene co-expression). Therefore, microarray missing
value estimation remains a challenging yet rewarding topic
deserving further investigation [10].

To facilitate the analysis of incomplete microarray data,
researchers have designed a great number of missing value
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imputation algorithms [11]. According to the information
utilization scheme, we broadly categorize them into biology
knowledge-, global learning-, local learning-, and hybrid-
based methods. Biology knowledge-based methods take as
prior information the biologically validated knowledge to
establish the relationships among genes and use it to impute
missing values [12], [13]. One major limitation is that they
often require specific domain knowledge. Hence, they have
poor extensibility to new and under-explored cases where
there is a lack of verified biological knowledge. In contrast
to the above methods, global learning-based methods adopt
a data-driven strategy to estimate missing values under the
assumption that a covariance structure exists in the obtained
microarray dataset [14]. Such methods generally perform
well on gene expression profiles with a large size, but they
suffer from performance degradation in the case where the
global covariance structure does not exist or local structures
dominate [15]. In contrast, local learning-based methods
explore the latent local structure information to obtain the
relationships between a target gene and its neighbors [5], [16].
They typically work by first identifying neighbor genes of
a target gene gt and then estimating the missing entries of
gt with its neighbors [17], [18]. For example, the k-nearest-
neighbor imputation method (KNNimptue) selects k nearest
neighbors of gt according to a distance metric and esti-
mates the missing values by weighting its k neighbors [5].
Local least squares imputation method (LLSimpute) applies
the least squares regression model to explicitly establish
the relationships between gt and its neighbors [18]. From
the viewpoint of model fitting, the inappropriate selection
of neighbors can lead to degraded accuracy. Hybrid-based
methods aim to get improved results by combining multiple
well-performing imputation algorithms in a sequential or
parallel scheme [19], [20]. In practice, many hybrid-based
methods take as the building blocks several global learning
and/or local learning-based methods. For example, there are
studies that linearly integrate multiple imputation methods
and transform it into an optimization problem [19], com-
bine estimators under an ensemble learning framework [20],
or take the output of an imputation algorithm as the input of
subsequent algorithms [21]. Undoubtedly, this increases the
complexity of an imputation algorithm.

With respect to the high-dimension small-sample-size
microarray data, since they typically contain a multi-
tude of genes that have similar expression profiles, local
learning-based methods generally better utilize the local
structure of the data and get better imputation results than
that of global learning-based methods. Currently, there are
numerous imputation methods available, but most of them
suffer from over-fitting and degraded performance. Con-
sidering that regularization techniques help mitigate this
issue, we herein introduce a regularized sparse framework
to establish the relationships between a target gene and its
neighbors for missing value estimation. In view of the simul-
taneous variable selection and grouping effect of elastic net
penalty [22], we design an elastic net regularized local least

squares imputation method, called RLLSimpute_EN, to cap-
ture the hidden data structure information. RLLSimpute_EN
ranks the target genes according to the missing rates and
handles them sequentially from the minimal to the maximal
missing rate to exploit previously estimated values. This
enables us to obtain a robust missing value estimator. Besides,
we take a further step to introduce a different similarity metric
for selecting neighbor genes. Specifically, we use a filtering
metric to exclude the genes with large missing rates from
the candidates in choosing the neighbors of a target gene,
and accordingly we design another four imputation methods
with different regularization terms under the framework and
also experimentally compare them with RLLSimpute_EN.
The main contributions of this study are itemized as follows.
(1) We present a regularized sparse framework to impute
missing entries of microarray data and propose an elastic
net regularized local least squares-based imputation method
to capture the relationships between a target gene and its
neighbors. This helps utilize the latent local structure of
data and reduce the risk of overfitting. (2) We introduce a
filtering metric to select neighbor genes and integrate it into
the framework. Moreover, we propose another four missing
value imputation methods. This shows the flexibility of the
framework and presents a meaningful insight in choosing
neighbors. (3) Extensive experiments on eight microarray
datasets are conducted to evaluate the goodness of the pro-
posedmethods and compare themwith other eight commonly
used imputation algorithms in terms of three metrics. Particu-
larly, three different regularization techniques are evaluated.
Experimental results demonstrate the power of sparse regu-
larization and the superiority of the proposed models.

The remainder of this paper is organized as follows.
Section II discusses related work on imputation methods.
Section III details the regularized sparse framework and
introduces the proposed imputation methods. In section IV,
experimental setup, evaluation metrics, and results and anal-
ysis are presented. Section V analyzes the theoretical time
complexity. The last section summarizes the study.

II. RELATED WORK
To maximize the value of gene expression profiles and
serve downstream analyses, researchers have proposed a lot
of missing value estimation methods. As we discussed in
the previous section, we can categorize them into biology
knowledge-, global learning-, local learning-, and hybrid-
based methods. To be specific, biology knowledge-based
methods use the validated biology knowledge (e.g., gene
function network, protein-protein interaction networks, and
gene ontology) to estimate missing entries [12], [13]. For
example, Yang et al. [12] proposed a gene ontology-based
similarity measure to select neighbor genes and used them
to impute missing values. Xiang et al. [13] proposed the
histone acetylation information aided imputation algorithm
(called HAIimpute) with the knowledge of gene regulatory
mechanism. They conducted comparisons with KNNimptue
and LLSimpute to show the effectiveness of HAIimpute.
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Obviously, knowledge-driven methods depend heavily on
domain knowledge. Hybrid-based methods are basically built
on multiple local learning and global learning-based methods
to improve the overall imputation performance. For exam-
ple, Jornsten et al. [19] proposed to combine global and
local learning-based methods (LinCmb) to estimate the miss-
ing values. Li et al. [23] combined the predictions from
local least squares-based imputation method and Bayesian
principal component analysis imputation method under the
ensemble framework and inferred the missing values from
the weighted outputs of its components. Meng et al. [24]
proposed to combine Bayesian principal component analysis
and bicluster analysis, where the latter filtered the selection
of neighbors and the former was applied on the biclusters
to explore the local data structure. To ease the setting of
initial parameter values, Shi et al. [21] used the output of
the local least squares-based imputation algorithm to initial-
ize the parameter values of Bayesian principal component
analysis. For global learning-based methods, they generally
assume that there exists a covariate structure in the studied
dataset. Singular vector decomposition imputation (SVDim-
pute) and Bayesian principal component analysis imputation
method (BPCAimptue) are two representatives [14], [15],
where the former employs the singular value decomposition
to obtain the most significant eigengenes and the latter uti-
lizes the principal component analysis, probability estimation
and variational Bayesian inference to infer the parameter
values for missing values estimation. BPCAimpute iteratively
performs the principal component regression, the Bayesian
estimation, and an Expectation-Maximization-like algorithm
until there is no missing entry [14]. Experimental results
indicate the superiority of BPCAimpute over SVDimpute.
Generally, global learning-based methods better handle the
gene expression profiles of large sizes and easily suffer from
degraded accuracy if the local structure dominates the data.

Unlike global learning-based methods, local learning-
based methods, rather than rely on a covariate structure,
utilize the similar genes of a target gene to estimate missing
values [5], [18], [25], where how to identify neighbors of the
target genes and further establish their relationships largely
determines the imputation results of an algorithm. There are
studies that divide genes into multiple clusters and use the
within-group genes of the target gene to estimate missing
values. For example, Ouyang et al. [26] gave the Gaus-
sian mixture clustering imputation algorithm (GMCimpute),
where the Gaussian mixture model is used to parameterize
the gene expression profiles and estimate the missing values
within a cluster. Keerin et al. [27] developed a cluster-directed
framework for neighbor-based imputation method (CFNI-
impute), which first chose neighbor genes using the data
clustering technique and then estimated the missing val-
ues with KNNimpute. To improve the selection of similar
genes, Chattopadhyay et al. [28] proposed a bicluster-based
imputation method (BIimpute) that selected a subset of both
samples and genes. BIimpute used the weighted average of
similar samples and genes to estimate missing values of

the target gene. Another line of research is to first measure
the similarity between the target gene and each candidate
gene and then choose the neighbor genes. For example,
k-nearest-neighbor imputation method (KNNimptue) esti-
mates the missing entries of a target gene with its k nearest
neighbors [5]. KNNimpute first selects k nearest neighbors
of a target gene according to a distance metric and then
imputes the missing values by weighting the values of the
k neighbors. According to KNNimpute, Kim et al. [29]
proposed the sequential version of KNNimptue (SKNNim-
pute) that estimated missing values in a sequential scheme.
Brás and Menezes [30] proposed the iterative k-nearest-
neighbor imputation method (IKNNimptue) that works in an
iterative scheme. One drawback of nearest neighbors-based
methods is that they handle the neighbors independently and
ignore the relationship between the neighbors. To mitigate
the problem, there are studies that apply regression mod-
els to model the relationships between the target gene and
its neighbors and use the optimized regression model for
imputation. For example, least squares imputation method
(LSimpute) [17] and LLSimpute [18] used the least squares
regression model. Zhang et al. [31] proposed the sequentially
local least squares-based imputation method (SLLSimpute).
Wang et al. [32] proposed the shrinkage regression-based
method (ShrinkageLLS) that first selected similar genes by
Pearson correlation coefficients and then adjusted the regres-
sion coefficients with a shrinkage estimation operator. Com-
pared with KNNimpute and its variations, regression-based
methods generally obtain better results, especially when a
larger number of neighbor genes are used [33]. However,
regression methods easily suffer from severe overfitting.
To mitigate this issue, Wang et al. [33] trained a local least
squares imputation model with L2 regularization between a
target gene and its neighbors. Empirical results show that it
outperforms other nine competitors, including BPCAimpute,
BIimpute, KNNimpute, and LLSimpute. For regularization
techniques, given a group of correlated variables, in the case
of L1 regularization, one of the correlated variables has a
larger coefficient and the rest have a coefficient close to
zero, while for L2 regularization, the coefficients of correlated
predictors are similar. That is, L1 regularization works well if
there are a small number of significant parameters, and L2
regularization is preferable if there are a group of correlated
features. Unfortunately, the selection of regularization terms
depends on the data at hand, and we usually have no idea
about the true parameter values in advance. Therefore, it is
desirable to consider the robust elastic net regularization that
owns the characteristics of both L1 and L2 regularization.
Accordingly, we present a regularized sparse framework to
formalize the problem and propose an elastic net regularized
local least squares imputation method.

III. THE PROPOSED METHOD
For illustration purpose, gene expression profiles are often
represented as a matrix D ∈ Rm×n (m � n), as shown
in Fig. 1, where each column denoting a gene and each

VOLUME 9, 2021 16901



A. Wang et al.: Regularized Sparse Modelling for Microarray Missing Value Estimation

FIGURE 1. Logical storage structure of microarray data.

row indicating a sample. We use g1, g2, . . . , gn to denote
n genes and g1, g2, . . . , gn( gi ∈ R1×m, 1 ≤ i ≤ n) to
indicate the vector forms. d1, d2, . . . , dnare m samples and
d1,d2, . . . , dm(di ∈ Rn×1, 1 ≤ i ≤ m) correspond to their
vectors. Specifically, Fig. 1 presents amicroarray dataset with
missing values. The entry gi,j indicates the expression level
of the j-th gene of the i-th sample. We use xi,j to represent
a missing entry at that position, such as x1,3 and x3,n. In this
study, a genewith at least onemissing entry across all samples
is called a target gene gt and all genes excluding gt are candi-
date genes. The gene that has a similar expression pattern to
gt is called a similar gene. The collection of candidate genes
consists of candidate neighbors of gt , and the set of similar
genes has the similar genes of gt . Obviously, for gt , its similar
genes is a subset of corresponding candidate genes. Thus,
the task of an imputation algorithm is to accurately infer the
missing entries of gt with the observed values of its similar
genes.

To fully utilize the local structure of data and achieve a
better bias-variance tradeoff, we explore the regularization
techniques and formalize a regularized sparse framework
to capture the relationships between a target gene gt and
its neighbors. Specifically, the proposed framework mainly
consists of the following six components: A) identifying gt
according to a given criterion; B) choosing the similar genes
of gt from its candidate neighbors; C) measuring the sim-
ilarity between gt and each of its similar genes based on
a certain metric; D) training a model on gt and its neigh-
bors and applying it to estimate the missing values of gt ;
E) marking gt as a complete gene; F) repeating the above
steps until all target genes have been processed. In summary,
Algorithm 1 presents the proposed missing value imputation
framework, where lines 3-7 correspond to the key steps.
In next subsections, based on the above discussions, we detail
its key components and present the elastic net regularized
imputation method. Fig. 2 shows the flow chart. Particularly,
the proposed framework is a general one and other specific
implementations can be integrated into it flexibly. Besides,
in this study, we also introduce a filtering metric for the
selection of similar genes into the framework and further
present another four missing value imputation methods.

A. IDENTIFYING THE TARGET GENE
Given a microarray dataset, it usually contains more than one
genes with missing values and we need to specify the order

Algorithm 1 The Proposed Imputation Framework
Input:Microarray dataset G with missing values
Output: Imputed dataset G
1 // initialization

identify genes that have missing values and store them in
gs

2 while not_empty(gs) do
3 // select the target gene

identify the target gene gt according to a certain strategy
4 // filter similar genes

select the genes similar to gt based on (1)
5 // choose nearest neighbors

5.1) calculate the neighbor distances of gt using (2)
5.2) choose k nearest neighbors of gt

6 // imputation
6.1) train a regression model using (4)
6.2) estimate the missing values of gt using (6) and return
g

7 // update gs
7.1) update G by replacing gt with g
7.2) delete gt from gs

8 end while
9 return G;

FIGURE 2. The flow chart for missing value estimation.

of handling these target genes. In general, there are multiple
strategies that are available for use. For example, we can
randomly choose a gene having at least one missing entry as
the target gene. This, even though simple, poses a challenge
to repeat the experimental results. To reduce the randomness,
one common used strategy is to scan the gene expression pro-
file forward or backward and sequentially estimate missing
values [5], [18]. In addition, since handling a gene that has
a larger missing rate is more challenging than the case of
handling a gene with fewer missing entries, we sequentially
estimate the missing values. Specifically, we handle the target
gene that has a minimal missing rate in each round, which
also enables us to reuse those estimated values in processing
the genes that have larger missing rates. We here adopt it
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to identify the target gene. Formally, for D that contains n1
incomplete genes, we use a matrix D1 ∈ Rm×n1 to store them
and use D2 ∈ Rm×(n−n1) to record the complete genes. The
missing rate ri of gene gi ∈ D1 equals the ratio between the
number of missing entries of gi and the dataset size m. Then,
the gene gi with the minimum ri is chosen as gt .

B. SELECTING SIMILAR GENES
After identifying the target gene gt , this step involves the
selection of similar genes from the candidate set. Though the
aim is to impute the missing entry of gt with the observed
values of its similar genes, not all candidate genes of gt
can be used and one requirement is that the similar genes
should have observed values at the indices where gt has
missing values. For example, if gt has a missing entry in
the first example, a candidate gene gc that misses the first
entry provides no information to estimate the first value of
gt . Suppose idx(g) indicates the indices of missing entries of
gene g, the qualified similar gene should meet the criterion:
the intersection between idx(gc) and idx(gt ) is not empty.

idx(gt ) ∩ idx(gc) 6= ∅. (1)

C. SIMILARITY MEASUREMENT
After determining a gt and its similar genes, we measure the
similarity between gt and each of its similar genes using a
certain distance metric. Generally, there are a multitude of
distance metrics available for use (e.g., Pearson correlation
coefficient, cosine distance, and Euclidean distance). Since
most existing distance metrics take as input complete data,
they have limited power in directly handling the case with
missing entries. We herein only take their common parts for
measurement. Specifically, for gt and its similar gene gc,
we use (2) to calculate the distance disc between gc and gt ,

disc = f (gt , gc) = sim(g∼idx( gt )∩∼idx(gc)t , g∼idx(gt )∩∼idx(gc)c )

(2)

where ∼idx(gt ) denotes the complementary set of idx(gt ),
sim means a certain similarity metric such as Mahalanobis
distance, Euclidean distance, cosine distance, and Pearson
correlation coefficient, ∼ idx(gt )∩ ∼ idx(gc) denotes the set
of indices where both gc and gt have values, and |A| denotes
the cardinality of the set A. Among the above-mentioned
distance metrics, Euclidean distance metric is widely used
and previous studies have also shown its effectiveness in
analyzing microarray data, therefore we use it, shown in (3).

disc=sim(gt , gc)=

√∑|∼idx(gt )∩∼idx(gc)|

i=1
(git − gic)

2
. (3)

D. ESTIMATING THE MISSING VALUES
According to the distances between gt and its similar genes,
we select k similar genes to estimate the missing values of gt .
Particularly, the key is to establish the relationships between
gt and its neighbors and also avoid overfitting. We introduce
a regularized sparse framework that builds a linear regression

model on gt and its k neighbors to capture the local structure,
which seeks to solve the optimization problem (4),

argmin
β
{(gidx(gt )t −

k∑
c=1

βcg
idx(gt )
c )2 + λR(β)}, (4)

where β = [β1, β2, · · · , βk ], βc is the regression coefficient
of gc(1 ≤ c ≤ k), disc is the distance between gt andgc,
and R(β) is a regularization term. The parameter λ controls a
tradeoff between small coefficients of β and data fitting.

In view of the simultaneous variable selection and
grouping effect of elastic net penalty, we train an elastic
net regularized local least squares-based imputation model
(RLLSimpute_EN) to infer the missing values of gt with its
neighbors. RLLSimpute_EN takes the form of the specific
objective function (5),

argmin
β
{(gidx(gt )t −

k∑
c=1

βcg
idx(gt )
c )2 + λR(β)}

s.t.R(β) = α||β||1 +
(1− α)

2
||β||22

‖β‖1 =
∑k

i=1
|βi|, ‖β‖

2
2 =

∑k

i=1
β2i ,

(5)

where λ controls the overall penalty and α balances the elastic
net penalty. Furthermore, for the regularization term,

1) if λ = 0, RLLSimpute_EN becomes a standard regres-
sion model, which easily suffers from overfitting.

2) if α = 0, RLLSimpute_EN reduces to the L2 regu-
larized regression model RLLSimpute_L2 that aims to
minimize the sum of the squares of coefficients.

3) if α = 1, RLLSimpute_EN equals the L1 regularized
regression model RLLSimpute_L1 that makes many
coefficients close to zero.

For the three regularization terms, in comparison with
L2 regularization that keeps or discards a group of highly
correlated variables in a model and L1 regularization that
tends to select one variable, the elastic net regularization is
a compromise between L1 and L2 and enjoys the sparsity of
L1 and the regularization of L2. This indicates that the elastic
net largely contributes to the accurate and robust missing
value estimation. After getting β∗ = (β∗1 , β

∗

2 , . . . , β
∗
k ) of (5),

we estimate the missing values of gt using (6),

gmiss
t = (β∗1 , β

∗

2 , . . . , β
∗
k ) ∗ [g

miss
1 , gmiss

2 , · · · , gmiss
k ] T,

(6)

where miss refers to the indices of samples without missing
values forgt . After gt is handled, we move it from D1 toD2.
We then take the gene with minimal missing rate from D1 as
the target gene. Repeat steps A-D until D2 is empty.

E. FILTERING SIMILAR GENES
In subsection B, we present the basic requirement for the
selection of similar genes. In practice, we can involve other
metrics to filter similar genes. We here take a further step
to introduce a filtering metric into the proposed framework.
Since a gene with many missing entries generally contains
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less information, we can filter out the candidate genes that
have a high missing rate besides the condition specified in
(1). That is, we filter out the gene with a missing rate that is
larger than the mean missing rate of all genes inD1, as shown
in (7).

rc <
1
n1

n1∑
i=1

ri. (7)

Accordingly, we design another four imputation meth-
ods based on the filtering metric, including filtering local
least squares-based imputation method (fLLSimpute), filter-
ing local least squares-based imputation with L1 regular-
ization (fLLSimpute_L1), filtering local least squares-based
imputation with L2 regularization (fLLSimpute_L2), and fil-
tering local least squares-based imputation with elastic net
(fLLSimpute_EN).

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL DATA
To evaluate the proposed methods, comparative experiments
are conducted on eight microarray datasets that cover both
time series and non-time series data. A brief summary of
them is given in Table 1. GDS38, GDS39, and GDS2967
are time series datasets and GDS1761, GDS3835, GDS4831,
GSE19119, and GASCH are non-time series datasets [33].
The second column indicates the size of the original dataset,
the third column shows the number of complete genes,
and the fourth column gives the missing rate of a dataset.
We observe that all datasets contain varying degrees of miss-
ing entries. For example, GDS1761 only has a missing rate of
0.15% and GDS3835 has a missing rate of 72.25%. The last
column provides the associated references for further study.

B. EVALUATION METRICS
As for the evaluation metrics, we compare them in term of
the root mean square error, Pearson correlation coefficient,
and conserved pairs proportion. Particularly, the first two
are statistical analysis related indicators (the first is a global
metric and the second is a local metric), while the last one is
biologically related.

1) ROOT MEAN SQUARE ERROR
Root mean square error (RMSE) measures the overall devia-
tions of estimated values from their true values [34], and is
calculated using (8),

RMSE =

√√√√ 1
N

m∑
i=1

n∑
j=1

[Gori(i, j)− Ge(i, j)]2, (8)

where Gori is the complete dataset, the incomplete G is ran-
domly generated from Gori, N equals the number of missing
entries of G, and Ge is the output of an imputation method.
Obviously, RMSE takes a non-negative value and the smaller
the RMSEs, the better the corresponding method. If an impu-
tation method works perfectly, RMSE equals 0.

TABLE 1. Description of the experimental datasets.

2) PEARSON CORRELATION COEFFICIENT
Pearson correlation coefficient (PCC) measures the power of
an imputation method in recovering the original structure of
a dataset [35]. It works on the sample level rather than matrix
level and it takes the form of (9),

correlation coefficient =
cov(sTori, s

T
e )

std(sTori)std(s
T
ori)
, (9)

where sTori is a sample of Gori, sTe ∈ Ge is the estimated
sample of sTori, cov(s

T
ori, s

T
e ) is the covariance between sTori

and sTe , and std(s
T
ori) (std(s

T
e )) is the standard deviation of s

T
ori

(sTe ). Pearson correlation coefficient takes a value between -1
and 1 and a larger value indicates better performance of an
algorithm.

3) CONSERVED PAIRS PROPORTION
Conserved pairs proportion (CPP) is a biological indicator
to evaluate the stability of two groups of gene clusters that
are obtained on the original complete dataset and on the
estimated dataset, respectively [42]. Similar toCPP, the aver-
age distance between partitions (ADBP) also aims to evalu-
ate how well an imputation algorithm preserves the cluster
structures. Particularly, CPP uses the hierarchical clustering
algorithm and ADBP uses the k-means to cluster data points.
Compared with CPP, ADBP is sensitive to the choice of
the initial cluster centers of k-means. We here use CPP,
which is also used by previous studies, to assess the structure
preservation [10], [33], [42]. Given the original dataset Gori,
we use Cref

k and Lrefk to denote the k-th cluster and its gene
list, respectively. For the estimated Ge of Gori, Cest

k′ and
Lestk ′ indicate the k ′-th cluster and its gene list, respectively.
Afterwards, CPP is obtained using (10),

CPP =
k=K∑
k=1

Nk/n, (10)

where K is the number of clusters, n is the total number of
genes, and Nk is obtained using (11),

Nk = max
k ′=1,··· ,K

 ∑
i∈Lrefk

∑
i′∈Lest

k′

I (i == i′)

, (11)
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where I ( ) is an indicator function. Obviously, CPP has the
maximal value 1 if the clustering results are the same.

C. EXPERIMENTAL RESULTS AND ANALYSIS
1) LAMDA-VALUE SELECTION
The parameter λ of regularized local learning methods con-
trols a tradeoff between fitting the training set well and
obtaining small weights. Herein, we repeat experiments ten
times on each dataset at a representative 5% missing rate to
search for the approximately optimal value of λ. According
to our preliminary work, we determine the λ value from
0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2,
0.5, 0.8, 1, 2, 2.5, 3, 3.5, 4, 5, and 6 by comparing the
averaged RMSEs. Similar to λ, we can search for the value
of alpha in elastic net from a set of candidate values. We here
empirically tune the value and use 0.2 in this study. The sparse
learning with efficient projections toolbox is used to solve the
above optimization problem [43]. Fig. 3 presents the RMSEs
of RLLSimpute_L1, RLLSimpute_L2, RLLSimpute_EN,
fLLSimpute_L1, fLLSimpute_L2, and fLLSimpute_EN. The
X-axis presents the candidate values of λ, and the Y-axis gives
their RMSEs. From Fig. 3, we can observe a general trend:
RMSEs first decrease and then increase with the increase of λ
for all the datasets. We also observe that the elastic net regu-
larization behaves like L1 and obtains degraded performance
at a high value of λ. According to the RMSE curve, we choose
λ for each gene expression profile.

2) K-VALUE SELECTION
The number of neighbor genes largely determines the
performance of local learning-basedmethods and is an impor-
tant parameter for nearest-neighbor-based imputation meth-
ods (KNNimpute, SKNNimpute, and IKNNimpute), least
squares-based imputation methods (LLSimpute, SLLSim-
pute, and fLLSimpute), and regularized local learning-based
imputation methods (RLLSimpute_L1, RLLSimpute_L2,
RLLSimpute_EN, fLLSimpute_L1, fLLSimpute_L2, and
fLLSimpute_EN). We experimentally investigate the RMSEs
with different number of neighbors. Specifically, we vary the
number of neighbors from 1 to 400 and repeat each experi-
ment ten times at a missing rate of 5% and report the averaged
root mean square errors. Fig. 4 presents the RMSEs of 12
local learning-based methods. The X-axis shows the number
of neighbors and the Y-axis gives the RMSEs. From Fig. 4, we
observe that the RMSEs of nearest neighbor-based methods
first decrease and then increase with the increase of k . The
root of the problem is that these methods do not consider the
relevance between the neighbors and thus behave poorly with
the increase of k . We also observe that KNNimpute, SKN-
Nimpute as well as IKNNimpute obtain relatively smaller
RSMEs when k ranges from 5 to 13. For least squares-based
methods, the RMSEs increase quickly when the value of k
approaches the sample size of a dataset and then gradually
decrease with the increase of k . This is mainly because the
solution to Eq. 5 without the regularization term is not fully

optimized when the number of neighbors is set to be the num-
ber of samples. In contrast to the above methods, regularized
local learning methods consistently obtain smaller RMSEs
than these of the non-regularized methods, since they better
handle the overfitting by penalizing the model complexity.

3) ROOT MEAN SQUARE ERROR
Fig. 5 presents the comparative RMSEs of 13 imputation
algorithms on the microarray datasets. The X-axis denotes
five different missing rates and corresponding RMSEs are
given in the Y-axis. from Fig. 5, we observe that RMSEs
tend to increase with the increase of missing rates for all the
evaluated methods. This is reasonable, since a larger missing
rate causes greater loss of information. We observe that the
RMSEs of least squares-based methods and regularized local
learning methods are close to each other at a small miss-
ing rate. However, regularized local learning methods gener-
ally outperform its competitors with the increase of missing
rates. This is possibly because least squares-based meth-
ods suffer from over-fitting. In contrast, regularized local
learning-based methods achieve a better tradeoff between
avoiding overfitting and fitting the training data well. In addi-
tion, we observe that least squares-based methods gener-
ally perform better than nearest neighbor-based methods that
ignore the relevance between neighbors. This indicates the
superiority of local squares regression model over the near-
est neighbor-based methods. Compared with the regularized
local learning methods, BPCAimpute obtains larger RMSEs
except on GDS3835 and GASCH, where they obtain similar
results. This is probably because a covariance structure exists
in GDS3835 and GASCH. This also supports the priority of
local learning-based methods in imputing missing values.

Tables 2-3 show the results corresponding to Fig. 5
with the missing rates of 5% and 20%, respectively. For
each dataset, the best result is shown in bold and the sec-
ond best is underscored. The numbers in the first row
correspond to the 13 algorithms shown in Fig. 5, where
‘‘1’’ refers to KNNimpute, ‘‘13’’ denotes fLLSimpute_EN,
and etc. We can also observe the power of regulariza-
tion techniques and robustness of elastic net across differ-
ent datasets. For example, in the case of 5%, the elastic
net-based methods obtain the best results on six datasets and
the second best results on the left two datasets. Besides,
to present a better comparison of regularized local learn-
ing methods and investigate their behaviors across datasets,
Fig. 6 shows the corresponding results, where the X-axis
denotes different missing rates and the Y-axis gives RMSEs.
From Fig. 6, we observe that regularized methods gener-
ally outperform the non-regularized methods. The perfor-
mance of RLLSimpute is inferior to that of RLLSimpute_L1,
RLLSimpute_L2, and RLLSimpute_EN, and three meth-
ods (fLLSimpute_L1, fLLSimpute_L2 and fLLSimpute_EN)
perform better than fLLSimpute. As for using the baseline
criterion of selecting similar genes, RLLSimpute_EN beats
RLLSimpute_L1 on eight datasets and outperforms RLL-
Simpute_L2 except on GDS4831. As for the filtered metric,
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FIGURE 3. RMSEs of the proposed methods with different λ-values.

fLLSimpute_L1, fLLSimpute_L2, and fLLSimpute_ENhave
mixed experimental results, where fLLSimpute_EN outper-
forms fLLSimpute_L2 on five datasets and fLLSimpute_L1
performs better than fLLSimpute_L2 on five datasets. This is
mainly because the filtering criterion discards the less similar
genes and the selected genes are highly correlated to each
other, which is more suitable for L1 regularization.

4) PEARSON CORRELATION COEFFICIENT
To measure the power of an estimator in recovering the
original structure of a dataset, we conduct experiments on
each dataset with a 5% missing rate and record the Pearson

correlation coefficient. Fig. 7 shows the results. The X-axis
shows the sample index and corresponding results of Pearson
correlation coefficient are given in Y-axis. Due to the large
number of samples of GASCH, we here only show results of
the first 30 samples. From Fig. 7, we observe that RLLSim-
pute_ENgenerally achieves better performance, indicating its
superiority in recovering the data structure. As for KNNim-
pute, SKNNimpute, and IKNNimpute, they perform worse
than the other methods. For BPCAimpute, it is comparable
to that of the least squares-based methods except on GDS38
and GDS39. But for the two datasets, BPCAimpute is inferior
to least squares-based methods and regularized local learning
methods.
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FIGURE 4. RMSEs vs. the number of neighbors.

TABLE 2. RMSEs of the imputation methods on the datasets with a missing rate of 5%.
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FIGURE 5. RMSEs vs. different missing rates.

TABLE 3. RMSEs of the imputation methods on the datasets with a missing rate of 20%.

Furthermore, according to Figs. 5 and 7, we observe that
methods with a larger RMSE can also better recover data
structure. For example, SKNNimpute obtains a larger PCC

than that of LLSimpute on GDS1761, however, it has a
larger RMSE. This is because RMSE reflects the overall
imputation performance at the dataset level, while Pearson
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FIGURE 6. RMSEs of regularized local learning methods vs. different missing rates.

correlation coefficient works at the sample level. Overall,
according to the above results and analyses, we conclude that
the proposed regularized local learning-based methods (i.e.,
RLLSimpute_L1, RLLSimpute_L2, RLLSimpute_EN, fLL-
Simpute_L1, fLLSimpute_L2, and fLLSimpute_EN) better
estimate the missing values than its competitors, including
one global learning-basedmethod (BPCAimpute), three near-
est neighbor-based methods (KNNimpute, SKNNimpute,
and IKNNimpute), and three least squares-based methods
(LLSimpute, SLLSimpute, and fLLSimpute) in terms of the
two statistical analysis related metrics. Also, the elastic net
regularized model is among the first priorities in choosing

an imputation algorithm due to its robustness across different
experimental datasets.

5) CONSERVED PAIRS PROPORTION
In terms of the number of returned clusters, as suggested
in [42], we initially set the numberK of clusters to be 500 and
test whether the first 10 most important clusters represent
80% of the genes. If yes, we reportK and take it as the number
of clusters; otherwise, we set K = K -1 and repeat the above
procedure until it meets the criteria. Afterwards, we apply the
hierarchical clustering with Ward’s linkage to partition the
dataset and then calculate CPP. Fig. 8 presents the CPPs of

VOLUME 9, 2021 16909



A. Wang et al.: Regularized Sparse Modelling for Microarray Missing Value Estimation

FIGURE 7. Experimental results of Pearson correlation coefficients.

different imputation methods on the datasets under different
missing rates.

From Fig. 8, we observe that missing values indeed have
much influence on the stability of gene clusters and CPP
generally decreases with the increase of missing rates. The
reason is that a larger missing rate comes with much loss
of information and consequently has a bigger impact on the
clustering. Second, we observe that the imputation methods
have mixed results on the datasets and no one dominates the
others, which is consistently with previous research [42]. The
possible reason is that the neighborhood relationship is easily
disturbed by the estimated values, even if there is a small
deviation of the estimations from their true values.

Tables 4-5 show the results corresponding to Fig. 8 with
the missing rates of 5% and 20%, respectively. For each
dataset, the best result is shown in bold and the second best
is underscored. The numbers in the first row correspond
to the 13 algorithms shown in Fig. 8, where ‘‘1’’ refers to
KNNimpute, ‘‘13’’ denotes fLLSimpute_EN, and etc. From
Tables 4-5, we also observe mixed results of the methods.

V. TIME COMPLEXITY ANALYSIS
Given a microarray dataset that has m samples and n genes,
if k neighbors are considered, then the time complexity of
KNNimpute and SKNNimpute are O(mn2) and O(n log n +
mn log n), respectively. The time complexity of IKNNimpute
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FIGURE 8. Experimental results of Conversed pairs proportion.

TABLE 4. CPP of the imputation methods on the datasets with a missing rate of 5%.

is O(mn + imn log n), where i specifies the number of iter-
ations. The time complexity of BPCAimpute is O(n(m2n +
mn(m − 1))) = O(m2n2). Least squares based methods take

O(k3) to find the inverse of a k ∗ k matrix, so the time
complexity of LLSimpute, SLLSimpute, and fLLSimpute are
O(n(mn+ k3)), O(n log n+ n(mn+ k3)), and O(n(mn+ k3)),
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TABLE 5. CPP of the imputation methods on the datasets with a missing rate of 20%.

respectively. For regularized local learning-based methods,
the time complexity of lasso, ridge regression and elastic
net regression is O(k3 + k2n). Hence, RLLSimpute_L1,
RLLSimpute_L2, and RLLSimpute_EN have the time com-
plexity of O(n(k3 + k2m + mn) + n log n), where O(n log n)
is the time complexity for sorting. The time complexity of
filtering out similar genes is O(n), so the time complexity of
fLLSimpute_L1, fLLSimpute_L2, and fLLSimpute_EN are
O(n(k3+ k2m+mn+ n)+ n log n). Accordingly, we observe
that nearest neighbor-based methods have a lower time com-
plexity than least squares-based methods and that regularized
local learning-based methods have slightly higher time costs
than least squares-based methods.

VI. CONCLUSION
Accurately estimating the missing values of microarray data
plays a crucial role in fully utilizing a collection of gene
expression profiles and facilitating downstream analyses,
therefore it remains a challenging yet rewarding research
topic. In this study, we develop a regularized local learning
framework that aims to better utilize the local structure of
microarray data. After detailing the key components of the
framework, we analyze three different regularization terms.
Motivated by the simultaneous variable selection and group-
ing effect of elastic net penalty, we design an elastic net reg-
ularized local least squares-based imputation method, named
RLLSimpute_EN, to estimate the missing entries of a target
gene with its neighbors. Besides, we integrate a new filtering
similarity metric into the framework and accordingly propose
another four imputation methods (i.e., fLLSimpute, fLLSim-
pute_L1, fLLSimpute_L2, and fLLSimpute_EN). To reuse
previously estimated values, the proposed methods work in
ascending order of the missing rates. Extensive comparative
experiments against other eight imputation methods are con-
ducted on eight gene expression profiles. Results indicate
the power of sparse regularization techniques in mitigating
overfitting and the superiority of elastic net penalty in imput-
ing the missing values. Finally, theoretical time complexity
analysis shows its efficiency.

To further advance relevant researches, we plan to work
along the following lines. First, the biology knowledge,
if available, can provide valuable information of the genes,
we will then explore domain knowledge-oriented missing
value imputation methods by analyzing global and local
structural information, sample relevance, and gene semantic
knowledge. Second, the proposed framework and methods

provide a way to handle missing values and have potential
use in other topics such as clinical and sensor data analysis.
Third, accurately evaluating the influence of missing values
on downstream tasks such as microarray data clustering and
interpretation remains another interesting topic [44].
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