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Abstract—Microarray experiments on gene expression inevitably generate missing values, which impedes further downstream

biological analysis. Therefore, it is key to estimate the missing values accurately. Most of the existing imputation methods tend to suffer

from the over-fitting problem. In this study, we propose two regularized local learning methods for microarray missing value imputation.

Motivated by the grouping effect of L2 regularization, after selecting the target gene, we train an L2 Regularized Local Least Squares

imputation model (RLLSimpute_L2) on the target gene and its neighbors to estimate the missing values of the target gene.

Furthermore, RLLSimpute_L2 imputes the missing values in an ascending order based on the associated missing rate with each target

gene. This contributes to fully utilizing the previously estimated values. Besides L2, we further explore L1 regularization and propose an

L1 Regularized Local Least Squares imputation model (RLLSimpute_L1). To evaluate their effectiveness, we conducted extensive

experimental studies on six benchmark datasets covering both time series and non-time series cases. Nine state-of-the-art imputation

methods are compared with RLLSimpute_L2 and RLLSimpute_L1 in terms of three performance metrics. The comparative

experimental results indicate that RLLSimpute_L2 outperforms its competitors by achieving smaller imputation errors and better

structure preservation of differentially expressed genes.

Index Terms—Microarray data, missing value imputation, regularized model, local learning, similarity measurement

Ç

1 INTRODUCTION

THE rapid development of DNA microarray technology
impressively facilitates the simultaneous measurement

of expression profiles of thousands of genes under different
experimental conditions [1], [2], and the obtained microar-
ray data provide an alternative to the identification of dis-
ease genes and the classification of tumor subtypes at the
molecular level [3], [4], [5]. Accordingly, researchers have
used various machine learning models and statistical analy-
sis techniques to analyze microarray data for the discovery
of meaningful biological knowledge [6], [7]. However, the
complexity of microarray technology makes it inevitable to
generate missing values with varying degrees in gene
expression profiles [8]. Many human and non-human fac-
tors in microarray technology, such as the irregular use of
microarray chips, insufficient resolution and contamination
of microarray surface, would lead to gene expression pro-
files with missing values [9]. There are studies showing that
most of publicly available microarray datasets contain miss-
ing values to varying degrees as high as 50 precent or even
95 precent [10]. On the other hand, most of existing gene
selection, clustering and functional annotation algorithms

have no internal way for missing values and require com-
plete data as inputs ideally [11]. Directly removing these
instances or genes with missing entries definitely causes
loss of information, especially when the removed genes
play a dominant role in a biological process [12]. Therefore,
it is crucial to precisely estimate the missing values of
microarray data [13].

Obviously, repeating microarray experiments is a simple
and effective method to deal with this situation. However,
due to the high experimental costs and the uncertainty of
obtaining the expected complete data, this multiple repeti-
tion-based method is usually not a priority [14]. To obtain a
complete dataset, we can simply replace missing values
with zeros, average of the observable values in the same
gene (row mean) or sample (column mean) [15]. Though
these methods have the advantages of efficiency and easy
implementation, they fail to utilize the latent data structure
information such as gene co-expression and relevance, thus
generally achieve a lower imputation accuracy.

During the past few years, researchers have proposed a
wealth of effective imputation methods for microarray data,
which can be broadly categorized into four groups: biology
knowledge-based, global learning-based, local learning-
based, and hybrid-based methods [16], [17], [18]. Biology
knowledge-based methods utilize validated biology knowl-
edge as prior information for the target gene imputation [19].
A major limitation of these methods is that they heavily rely
on domain specific knowledge and fail to tackle the new
under-explored cases that are with less biological knowledge
available. Global learning-based methods assume that a
covariance structure exists in the dataset and they utilize
such information to estimate the missing values. Singular
vector decomposition imputation (SVDimpute) and Bayesian

� A. Wang, Y. Chen, N. An, J. Yang, and L. Li are with the School of Com-
puter and Information, Hefei University of Technology, Hefei, Anhui
230000, China. E-mail: wangaiguo2546@163com, ye1991214@126.com,
ning.g.an@acm.org, jsjyj0801@163.com, llian@hfut.edu.cn.

� L. Jiang is with the Department of Computing Science, Umea
�
University,

Umea
�
, V€asterbotten 90187, Sweden. E-mail: lili.jiang@cs.umu.se.

Manuscript received 8 Feb. 2017; revised 7 Jan. 2018; accepted 24 Feb. 2018.
Date of publication 27 Feb. 2018; date of current version 31 May 2019.
(Corresponding author: Ning An).
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCBB.2018.2810205

980 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 16, NO. 3, MAY/JUNE 2019

1545-5963� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Foshan University. Downloaded on March 07,2023 at 03:02:07 UTC from IEEE Xplore.  Restrictions apply. 



principal component analysis (BPCAimpute) methods are
two representatives [16], [20]. Generally, global learning-
based methods are suitable for microarray datasets with
large sizes, but they fail to capture the local similar structures
in the data. In contrast to global learning-based methods,
local learning-based methods seek to find the similar local
structure and then impute the missing values with those
genes that are similar to the target gene. For example, the
k-nearest-neighbor imputation (KNNimpute) is among the
first proposed method to estimate the missing values of a
target gene with its k nearest neighbors [17]. Sequential
k-nearest-neighbor imputation (SKNNimpute) and iterative
k-nearest-neighbor imputation (IKNNimpute) are two
improved versions of KNNimpute and they also estimate the
missing values by weighting the values of the selected neigh-
bors [21], [22]. As nearest-neighbor-based methods fail to
consider the relevance between the neighbors, there are stud-
ies that propose to use linear regression models to build the
relationships between the target gene and its neighbors and
then impute themissing valueswith its neighbors and associ-
ated regression coefficients. In comparison with nearest-
neighbor based methods, these methods, including least
squares imputation (LSimpute) and local least squares impu-
tation (LLSimpute), tend to obtain better imputation accuracy
[23], [24]. Hybrid-based methods aim to combine multiple
imputation methods for better performance [5]. Commonly
used schemes include integrating different imputation meth-
ods under an ensemble or semi-supervised learning frame-
work [25], [26], linearly or non-linearly combining multiple
imputationmethods [15], [27].

Regarding missing value imputation, as most microarray
datasets contain genes with similar expression profiles and
have strong local structures, local learning-based methods
generally outperform global learning-based methods. Nev-
ertheless, most of them tend to suffer from the over-fitting
problem. That is, a model fits the training set well but
behaves poorly on the independent unseen test set. To miti-
gate this problem, in this study, we propose to penalize the
linear regressionmodelwith anL2 regularization formissing
value imputation of microarray data. Significantly, besides
L2 regularization, we can incorporate other regularization
terms, such as L1 regularization and L1=2 regularization. In
comparison with L2 regularization that has the grouping
effect, L1 regularization is a sparse model that encourages
the sum of the absolute values of the parameters to be small,
and L1=2 regularization ignores the correlation between vari-
ables. If there is a group of highly relevant variables,L1 regu-
larization andL1=2 regularization simply pick one variable to
represent the group. This can reduce overfitting but at the
cost of a loss in predictive power. In contrast, L2 regulariza-
tion will keep all the highly relevant variables towards a
better predictive performance. Also, our preliminary experi-
mental results indicate thatL2 regularized regressionmodels
achieve better imputation performance, so we choose L2 reg-
ularization in the study. Specifically, we train an L2 Regular-
ized Local Least Squares model (RLLSimpute_L2) between
the target gene and its neighbors for estimating the missing
values of the target gene. Because L2 regularization exhibits
the grouping effect, RLLSimpute_L2 can make highly corre-
lated variables in or out a model together. This enables us to
handle the overfitting problem as well as keep these highly

predictive variables in the regression model. Furthermore,
RLLSimpute_L2 sequentially imputes the missing values in
ascending order of the missing rates associated with the
target genes for utilizing previously estimated values. There-
fore, the proposed method is expected to achieve a satisfac-
tory performance for microarray data imputation. Besides,
we further explore the use of L1 regularization in mitigating
the problem of over-fitting. We then propose an L1 Regular-
ized Local Least Squares imputation model (i.e., RLLSimpu-
te_L1) and compare it with RLLSimpute_L2 in microarray
missing value imputation.

The remainder of this paper is organized as follows.
Section 2 reviews relatedwork onmicroarray data imputation
by giving three representative methods. Section 3 illustrates
the proposed regularized local learning-based imputation
methods, including RLLSimpute_L2 and RLLSimpute_L1. In
section 4, we introduce three metrics for performance evalua-
tion. Section 5 presents the experimental setup and experi-
mental results, shows how the proposed methods avoid the
risk of over-fitting, and analyzes the time complexity of the
proposedmethods. Section 6 concludes this study briefly and
discusses futurework.

2 RELATED WORK

There is a wealth of imputation methods for researchers to
use for estimating the missing values. And they can be
broadly grouped into four categories: biology knowledge-
based, global learning-based, local learning-based, and
hybrid-based methods. In practice, global learning-based
methods and local learning methods are commonly used
and are the basic building block of many hybrid-basedmeth-
ods [28], [26]. To have a general idea of global learning-based
methods and local learning-based methods and to better
understand their relationships with our proposed methods
RLLSimpute_L2 and RLLSimpute_L1, in this section, we
detail one representative global learning-based method (i.e.,
BPCAimpute) and two local learning-based methods (i.e.,
KNNimpute and LSimpute).

2.1 BPCAimpute

Bayesian principal component analysis imputation (BPCAim-
pute) method belongs to the global learning-based methods
and is performed by three steps (as follows) in the processes
of missing value estimation: 1) Principal Component (PC)
regression, 2) Bayesian estimation, and 3) an Expectation-
Maximization (EM)-like repetitive algorithm [20]. In detail,
the following example is taken to explain how BPCAimpute
works. BPCAimpute regards a d-dimensional gene expres-
sion vector y as a linear combination of principal axis vectors
wwl ð1 � l � k; and k < dÞ,

y ¼
X

k

l¼1

xlwl þ "; (1)

where k is the number of principle components, xxl is called
the factor score, " denotes the residual error. The l-th princi-
pal axis vector wl ¼

ffiffiffiffi
�l

p
ul, where �l and ul denote the l� th

eigenvalue and the corresponding eigenvector of the covari-
ance matrix S for the data set Y. Y is a collection of gene
expression vectors. The principal axis vectors W ¼ ðWobs;
WmissÞ, where Wobs denotes the observed part in the data
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andWmiss denotes the missing part. If the value of k is given,
the factor scores x ¼ ðx1; x2; :::xkÞ for the expression vector y
can be obtained by minimizing the residual error (2) over
the observed data set yobs,

err ¼ yobs �W obsx
�� ��2: (2)

Then, the missing values in the gene vector y can be esti-
mated using (3),

ymiss ¼ Wmissx; (3)

The parameter W is unknown beforehand in the above
procedure. BPCA use a probabilistic model, which is called
probabilistic principle component analysis (PPCA). Mean-
while, the model is built based on the assumption that the
residual error e and the factor scores x obey normal distribu-
tions, as shown in (4), (5),

pðxÞ ¼ Nkðxj0; IkÞ; (4)

pð"Þ ¼ Ndð" 0j ; ð1=tÞIdÞ; (5)

where Ik is a ðk� kÞ identity matrix and t is a scalar inverse
variance of ".Nk ðxxju; sÞ denotes a k-dimensional normal dis-
tribution for xx, whose mean and covariance are u and s,
respectively. BPCAimpute assumes Y ¼ Yobs; Ymissg, where
Yobs and Ymiss denote observed part and the missing part,
respectively. The variational Bayes algorithm is used to esti-
mate the posterior distribution of the parameter u ¼ fW;u; tg
andYmiss simultaneously. The default value of k is ðd� 1Þ.

2.2 Methods Based on KNNimpute

In KNNimpute method, k nearest-neighbor genes are taken
from the whole matrix of the test data set except genes that
has missing values at the same position with the gene to be
imputed [17]. Euclidean distance is usually used as the met-
ric to estimate the similarity of neighboring genes. To com-
pare the similarity of this metric, each gene should have the
same dimension and missing positions of values inside.
Missing values are estimated with the weighted average of
the corresponding column of the k nearest genes.

The weight wi of ith gene is calculated using

wi ¼
1=di

Pk
i¼1

1=di

; (6)

where k is the number of selected neighbor genes and di is
the distance between ith gene and the target gene.

Slightly different from KNNimpute, for sequential
KNNimpute (SKNNimpute) method, the target gene after
imputed can be reused in another round of imputation for
other target genes. And the strategy to select similar genes
is more rigorous than KNNimpute, that is, only complete
genes have chances to be selected as similar genes for the
target gene. In addition, the missing values were estimated
sequentially, starting from the gene having the smallest
missing rate to the gene with the largest missing rate [21].

Iterative KNNimpute (IKNNimpute), an enhanced version
of KNNimpute [22], first replaces all missing values in micro-
array data by row (gene) average, obtains a complete matrix
X0 of microarray data. Then IKNNimpute selects k nearest

similar genes in X for the target gene to estimate the missing
values. Repeat this step until there is no gene with missing
values. Finally, we can get an updated version of X, denoted
as X1. The sum of squared differences between the estimated
positions of the X andX1 can bemeasured using (7),

di ¼ Xi �Xiþ1
�� ��: (7)

If d < t (t is a threshold), the imputation is over. Other-
wise, start a new round imputation for X1 to obtain the X2

until the convergence criterion is reached.

2.3 Methods Based on LLSimpute

In Local least squares imputation (LLSimpute), the basic idea
for choosing similar genes is the same as that of KNNimpute
[24], and the difference is that LLSimpute involves amultiple
linear regression model to replace the weighted average
algorithm as equation (6). Themodel is presented as below,

min
x

ATx� s
�� ��

2
; (8)

where A is the matrix composed of similar genes that dele-
tes the samples with missing values at the same indices as
the target gene, s denotes the target gene after deleting the
position of missing values, and x is the regression coefficient
vector. After minimizing (8) and obtaining x, we can esti-
mate the missing values of the target gene using

a ¼ bTx ¼ bT AT
� �þ

w; (9)

where b is the matrix composed of samples having the same
positions as the target gene, and a denotes the estimated
values for the target gene.

Similar to the case of KNNimpute, the differences
between SLLSimpute and LLSimpute are corresponding to
the ones between KNNimpute and SKNNimpute [29].

3 THE PROPOSED METHOD

In this section, we present the proposed imputation method
for gene expression profiles. In the analysis of microarray
data, we usually use amatrix to representmicroarray data, as
shown in Fig. 1, where each row denotes a sample and each
column corresponds to a gene. Specifically, we useG 2 Rm�n

to represent a microarray dataset that contains m samples
and n genes ðm < < nÞ. We use s1; s2; :::; sm to denote them
samples, and s1; s2; :::; smðsi 2 Rn�1; 1 � i � mÞ are corre-
sponding vectors.We use g1; g2; :::; gn to represent the n genes
and use g1; g2; :::; gn ðgi 2 R1�m; 1 � i � nÞ to indicate their
vector forms. The entry gi;j represents the expression value of
the jth gene in the i� th sample. Particularly, we use ai;j to

Fig. 1. Logical storage structure of a microarray dataset with rows denot-
ing samples and column representing genes. ai;j indicates that there is a
missing value at the i� th row and j� th column.
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indicate that there is a missing value at the ith row and jth
column, such as a1;2 and am;3.

According to the above discussions, we first present the
proposed imputation method RLLSimpute_L2. Specifically,
RLLSimpute_L2 estimates the missing values with the fol-
lowing three steps until there exists no gene with missing
values. In the next sections, we illustrate its three key steps:
identifying a target gene with missing values, selecting
neighbors of the target gene, and training a regression model
between the target gene and its neighbors for imputation.

3.1 The Selection of Target Gene

Because the previously estimated values can be used to
impute the missing values of other target genes, RLLSimpute
_L2 adopts such a strategy: sequentially imputing themissing
values in ascending order of the missing rate associated with
each target gene. That is, RLLSimpute_L2 selects the gene
with minimal missing rate as target gene and estimates its
missing values. Then we can use the target gene with missing
values estimated when handling other genes with missing
values. For a microarray dataset G, suppose that there are n1

genes with missing values, we use G1 2 Rm�n1 to store the
genes with missing values, and use (10) to calculate the miss-
ing rate ri of the target gene gi inG1,

ri ¼
li
m

; (10)

where li represents the number of missing entries in gi and
m is the total number of samples. Then, the gene gi with
minimal missing rate is chosen as target gene gt.

3.2 The Selection of Similar Gene

For local learning-based methods, the second step is to iden-
tify genes that are similar to the target gene. Obviously, we
can use various distance metrics, such as Pearson correla-
tion coefficient and Euclidean distance, to measure the simi-
larity between two genes. The following objective function
(11) is used to measure the distance dv between the target
gene gt and its neighbor gv.

dv ¼ fðgt; gvÞ; (11)

In this study, RLLSimpute_L2 uses the Euclidean dis-
tance for similarity measurement as shown in (12),

dv ¼ ðgobst � gobsv Þ
�� ��

2
; (12)

where obs represents the indices of samples with observ-
able values for gt. A smaller distance between gv and gt
indicates that gv is more similar to gt than these genes with
a larger distance to gt.

3.3 Missing Values Estimation

After calculating the distances between the target gene gt and
each of its neighbors, we can select k nearest neighbors for gt
and use those neighbors to estimate the missing values of gt.
We can use various linear or non-linear regression techniques
to model the relationship between the target gene and its
neighbors, and herein we adopt the least square model
because of its easy implementation and initial success. Sup-
pose that there are k similar genes available, we can train a
linear regressionmodel with a regularization term using (13),

argmin
b

(

gobst �
X

k

v¼1

bvg
obs
v

 !2

þ �RðbÞ
)

; (13)

where b ¼ ½b1;b2; � � � ;bk	, bv is the regression coefficient of
gv ð1 � v � kÞ, and RðbÞ is a regularization term that is used
to penalize large coefficients/weights. The parameter � con-
trols a tradeoff between fitting the data well and having
small weights.

Furthermore, for the regularization term,

1) if RðbÞ ¼ 0, then the model is a standard regression
model that easily suffers from over-fitting in the pres-
ence of many irrelevant variables.

2) if RðbÞ ¼ kbk1 ¼
Pk

i¼1 jbij, then it is a L1 regularized
regression model and causes many coefficients to equal
zero, so that b is sparse.

3) if RðbÞ ¼ kbk22 ¼
Pk

i¼1 b
2
i , then it is a L2 regularized

regression model that encourages the sum of the
squares of coefficients to be small.

In contrast to L1 regularization that selects one variable
to represent the corresponding group, L2 regularization
can make highly correlated variables in or out a model
together. Hence, L2 regularized regression model generally
achieves a better tradeoff between handling overfitting and
keeping the highly predictive variables. Consequently, in
this study, RLLSimpute_L2 trains a linear regression model
by solving (14),

argmin
b

( 

gobst �
X

k

v¼1

bvg
obs
v

!2

þ �
Xk

i¼1
b2
i

)

: (14)

Further, the solution to (14) is given in (15),

b
 ¼ ½AAT � �I	þAgobst ; (15)

where A ¼ ½gobs1 ; gobs2 ; � � � ; gobsk 	, I is an identity matrix, and
ðMÞþ is the pseudo-inverse of matrix M. RLLSimpute_L2
then estimates the missing values of gt using (16),

gmiss
t ¼ ðb
1;b


2; :::; b


kÞ 
 ½gmiss

1 ; gmiss
2 ; � � � ; gmiss

k 	T; (16)

where miss indicates the indices of samples with missing
values for gt.

3.4 L1 Regularized Local Learning Method

Besides L2 regularization, L1 regularization is also one of
the commonly used techniques for avoiding over-fitting.
Hence, we propose the L1 Regularized Local Least Squares
imputation model (i.e., RLLSimpute_L1) and explore its
effectiveness. RLLSimpute_L1 takes a similar step to
RLLSimpute_L2 except that RLLSimpute_L1 solves the
optimization problem (17) rather than (14) to obtain the
regression coefficients. We can use the least angle regression
(LARS) algorithm to solve the problem and to further esti-
mate the missing values.

argmin
b

ðgobst �
X

k

v¼1

bvg
obs
v Þ

2

þ �
Xk

i¼1
jbij

( )

: (17)
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4 EVALUATION METRICS

To evaluate the effectiveness of RLLSimpute_L2 and
RLLSimpute_L1 in missing value imputation, we use three
evaluation metrics: root mean squared error [30], Pearson
correlation coefficient [31], and biomarker list concordance
index [32]. The former two are statistical analysis related
metrics, while the last one determines the impact of an
imputation method on subsequent biological analysis.
These three metrics will present a relatively comprehensive
comparison between RLLSimpute_L2 and RLLSimpute_L1
and its competitors.

4.1 Root Mean Squared Error

Root mean squared error (RMSE) is used to measure the
overall deviation of estimated values from their correspond-
ing true values [30]. We calculate RMSE using (18),

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X

m

i¼1

X

n

j¼1

Ĝði; jÞ�Goriði; jÞ
h i2

v

u

u

t ; (18)

where N equals the total number of missing entries in G,Ĝ
is an estimator of G, and Gori is the original dataset that is
used to generate G. RMSE takes a value larger than or equal
to 0, and a smaller RMSE indicates better performance of
the corresponding imputation method.

4.2 Pearson Correlation Coefficient

To investigate to which extent an imputation method main-
tains the original dataset structure, we use Pearson correla-
tion coefficient, as given in (19), to evaluate the performance
of an imputation method [31],

correlation coefficient ¼ covðŝT; sToriÞ
stdðŝTÞstdðsToriÞ

; (19)

where sTori is a sample of the original dataset Gori, ŝ
T is the

estimated sample of sTori in Ĝ, covðŝT; sToriÞ is the covariance
between sTori and ŝT, and stdðsToriÞ is the standard deviation
of sTori. The larger the Pearson correlation coefficient is, the
better the original data structure is maintained. Pearson cor-
relation coefficient takes a value of 1 if the estimated values
are linearly relevant to their original values.

4.3 Biomarker List Concordance Index

In the study of disease gene discovery and tumor subtype
classification, an important task is to identify the differen-
tially expressed genes [32]. Biomarker list concordance
index (BLCI) is used for measuring the preservation of dif-
ferentially expression genes when we select differentially
expressed genes on an imputed microarray dataset [33].
Given Gsig that is a collection of differentially expressed
genes selected from Gori and Hsig that is a collection of dif-
ferentially expressed genes selected from Ĝ, BLCI can be
calculated using (20),

BLCIðGsig; HsigÞ ¼
jGsig \Hsigj

jGsigj
þ
jGc

sig \Hc
sigj

jGc
sigj

� 1; (20)

where jSj is the size of a set S, Gc
sig is the complementary set

of Gsig, and so is Hc
sig to Hsig. BLCI uses significance analysis

of microarrays (SAM) to identify differentially expression
genes with a false discovery rate of 5 precent [34]. A larger
BLCI indicates that the corresponding imputation method
can better preserve the structure of differentially expressed
genes. BLCI takes a maximal value of 1 if Gsig equalsHsig.

5 EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Experimental Data and Comparative Methods

To validate the effectiveness of the proposed method in
microarray missing value imputation, we conducted exten-
sive experiments on six publicly available microarray data-
sets that cover both time series and non-time series cases.
Table 1 presents a brief summary of the six datasets. The
first three datasets are time-series data and the rest are non-
time series data. The second column shows the total number
of genes of the original dataset, the third column gives the
number of complete genes, and the last column shows the
missing rate of each dataset. We can see that all six microar-
ray datasets contain missing values at varying degrees. For
example, GDS38 has a missing rate of 6.10 precent, and 2398
out of 7680 genes contain at least one missing entry; the
missing rate of GDS1761 is about 0.15 precent; the missing
rate of GDS3835 reaches up to 72.25 precent with 22578 out
of 27648 genes having at least one missing entry. All experi-
mental datasets are available online1.

In this study, following the way of previous works [17],
[23], we obtain experimental datasets by randomly intro-
ducing missing values to the complete dataset with missing
rates of 1 precent, 5 precent, 10 precent, 15 precent, and
20 precent, respectively. Specifically, each original microar-
ray dataset is pre-processed by removing samples and
genes that contain missing entries to obtain a complete
matrix. Then certain percentage of entries of the complete
matrix are randomly selected and marked as missing val-
ues. Every random running will create an experimental
dataset with the corresponding missing rate. For each
experimental dataset, one imputation method is then used
to estimate the introduced missing values, and the imputed
values are compared to the corresponding true values for
performance evaluation. To demonstrate the effectiveness
of RLLSimpute_L2 and RLLSimpute_L1, we include other
nine well-performing imputation methods, including
BPCAimpute [20], KNNimpute [17], SKNNimpute [21],
IKNNimpute [22], LLSimpute [24], SLLSimpute [29], [35],
Biclustering Imputation (BSimpute) [41], Multiple Imputa-
tion by Chained Equations (MICE) [42], and ShrinkageLLS
[43], as a comparison. BPCAimpute is global learning-based

TABLE 1
Experimental Dataset Description

Dataset Original dataset
(genes
samples)

Complete dataset
(genes
samples)

Missing
rate (%)

Ref.

GDS38 7680
16 5282
16 6.10 [36]
GDS39 7680
14 6942
14 3.21 [16]
GDS2967 6159
33 3587
33 9.24 [37]
GDS1761 9706
64 8849
64 0.15 [38]
GDS3835 27648
48 5070
48 72.25 [39]
GDS4831 24526
22 10523
22 23.75 [40]

1. https://www.ncbi.nlm.nih.gov/
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method, while RLLSimpute_L2, RLLSimpute_L1 and the
rest are local learning-based methods. Furthermore, we cat-
egorize KNNimpute, SKNNimpute, and IKNNimpute as
nearest neighbor-based methods and group LLSimpute,
SLLSimpute, and ShrinkageLLS into least squares-based
methods. BSimpute is an imputation method based on
biclustering by selecting a subset of similar genes and a sub-
set of similar samples [41]. In this study, as the authors sug-
gested, MICE employs the classification and regression tree
as the conditional model to identify the complex and non-
linear relations among variables [42]. RLLSimpue_L2 and
RLLSimpute_L1 were implemented in Matlab and the code
will be available on our website soon2. For local learning-
based methods, we are required to determine the optimal
number of neighbors to be used. Besides, there is an extra
parameter � for RLLSimpute_L2 and RLLSimpute_L1 to
determine its optimal value. And the optimal value for the
parameter is chosen as the one achieving the smallest root
mean squared error. In this following section, we conduct
comprehensive experiments to show the effectiveness of L2

regularization in estimating microarray missing values.

5.2 Experimental Results and Analysis

5.2.1 Determining the Value of �

The parameter � of RLLSimpute_L2 and RLLSimpute_L1
controls a tradeoff between fitting the data well and having
small weights. To determine the approximately optimal

value of �, we conduct experiments thirty times on each data-
set with a representative 5 precent missing rate. 5 precent is
an empirical value from previous approaches including
KNNimpute, SKNNimpute, LLSimpute, and SVDimpute.
To effectively explore the value of �, according to our prelim-
inary work, the candidate values of � used in this study
include 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2,
0.5, 0.8, 1, 2, 2.5, 3, 3.5, 4, 5, 6, and 7. Fig. 2 presents the aver-
aged root mean squared errors of RLLSimpute_L2 and
RLLSimpute_L1 on the six microarray datasets. The X-axis
represents the optional values of �, and the Y-axis shows the
corresponding root mean squared errors (RMSE). From
Fig. 2, we see that there is a general trend for all datasets: the
RMSEs first decrease with increase of �, and increase as �
increases. We then can determine the approximately optimal
value of � for each dataset. From Fig. 2, we also observe that
RLLSimpute_L2 consistently obtains smaller RMSEs than
RLLSimpute_L1, which demonstrates the superiority of L2

regularization over L1 regularization. Herein, L2 regulariza-
tion is a priority over L1 regularization in estimating missing
values.

5.2.2 Determining the Value of k

The number of nearest neighbors is an important parameter
for local learning-based methods, including KNNimpute,
SKNNimpute, IKNNimpute, LLSimpute, SLLSimpute,
ShrinkageLLS, RLLSimpute_L2, and RLLSimpute_L1. To
determine the approximately optimal number of neighbors
for each method, we conduct experiments to investigate the
relationship between the number of neighbors used and the

Fig. 2. RMSE of RLLSimpute_L2 and RLLSimpute_L1 with different �-values on the six datasets.

2. http://gerontech.hfut.edu.cn
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root mean squared errors at a representative missing rate of
5 precent. We conducted experiments thirty times with the
number of neighbors ranging from 1 to 400. Fig. 3 presents
the averaged root mean squared errors of the eight meth-
ods. The X-axis represents the number of candidate neigh-
bors, k, and the Y-axis corresponds to the root mean
squared errors. From Fig. 3, we can observe that for LLSim-
pute, SLLSimpute, and ShrinkageLLS, the RMSEs rise
quickly when k approaches the number of samples of a
dataset and then decreases with the increase of k. For
KNNimpute, SKNNimpute, and IKNNimpute, the RMSEs
first decrease with the use of more neighbors and then
increase with the increase of k. The main reason is that as k
increases, the contribution of weak relevant or irrelevant
genes plays a dominant role, leading to accuracy decease. In
contrast to the other seven methods, RLLSimpute_L2 tends
to obtain smaller RMSEs with the increase of k and is rela-
tively insensitive to the exact value of k. We observe that
RLLSimpute_L1 behaves poorly, which is consistent to our
previous analysis. In addition, we see that KNNimpute,
SKNNimpute, and IKNNimpute achieve smaller root mean
squared error when k ranges from 5 to 13. However,
because nearest-neighbor-based methods fail to consider
the relevance between the neighbors, nearest neighbor-
based methods become worse with the increase of k.

5.2.3 Risk of Over-Fitting

Over-fitting refers to the situation that a model fits the train-
ing set well but works poorly on the unseen test set. That is,
the model has a small training error but achieves high errors
on the test set. In this study, to show how regularization

techniques help achieve a tradeoff between model complex-
ity and accuracy, we conduct experiments with three repre-
sentative methods, including LLSimpute, RLLSimpute_L2
and RLLSimpute_L1, under different missing rates. Specifi-
cally, different from RLLSimpute_L2 and RLLSimpute_L1,
there is no regularization term in LLSimpute. We record and
plot their training errors and test errors. Fig. 4 presents the
results. The X-axis represents themissing rates and the Y-axis
corresponds to RMSE. From Fig. 4, we observe that LLSim-
pute works perfectly on the training set but achieves high test
errors. This indicate that over-fitting occurs in LLSimpute. In
contrast, RLLSimpute_L2 and RLLSimpute_L1 can mitigate
the problem by reducing the model complexity for high pre-
dictive performance. We also see the superiority of RLLSim-
pute_L2 over RLLSimpute_L1.

5.2.4 Root Mean Squared Error

In this study, for each missing rate, we conduct experiments
thirty times for each imputation method and each missing
rate and obtained the average root mean squared error.
Fig. 5 shows the experimental results of the eleven imputa-
tion methods. The X-axis denotes the missing rates and the
Y-axis represents the RMSE. A smaller RMSE reflects lower
deviation of imputation from corresponding true values.
From Fig. 5, we can observe that RMSE increases with the
increase of missing rates for all imputation methods. This is
reasonable because a larger missing rate comes with the
loss of more information. We can also observe that the
RMSEs of LLSimpute, SLLSimpute, ShrinkageLLS, and
RLLSimpute_L2 are close to each other at the missing rate
of 1 precent. However, with the increase of missing rates,

Fig. 3. RMSE vs. the number of neighbors on the six datasets.
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RLLSimpute_L2 consistently outperforms its competitors.
This is probably because LLSimpute, SLLSimpute, and
ShrinkageLLS suffer from over-fitting when dealing with a
larger number of similar genes.

In contrast to RLLSimpute_L1, RLLSimpute L2 can
achieve a better tradeoff between handling overfitting and
keeping the highly predictive variables. We also observe that
least squares-basedmethods tend to obtain better imputation

Fig. 4. Comparison of training and test errors on the six datasets.

Fig. 5. RMSE vs. different missing rates on the six datasets.
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accuracy than nearest neighbor-based methods. This indi-
cates the superiority of regression models over nearest
neighbor techniques. In Comparison with RLLSimpute_L2,
BPCAimpute has a larger RMSE except on GDS3835 where
BPCAimpute and RLLSimpute_L2 obtain similar imputation
performance. This is probably becauseGDS3835 has a covari-
ance structure in which situation global learning-based
methods generally better estimated the missing values.
Besides, becausemore missing entries leads to the damage of
global data structure, RLLSimpute_L2 works better than
BPCAimpute at a high missing rate. We can observe that
MICE performs poorly on all datasets. The main reason is
thatMICE uses classification and regression tree as the condi-
tional model and it desires a large number of samples for bet-
ter performances, which is not the case ofmicroarray data.

We further use the two-sided Wilcoxon rank sum test
with a significance interval of 95 precent to determine

whether there is any difference between RLLSimpute_L2
and its competitors in terms of RMSE. In our experiments,
the difference is significant if the p-value is less than 0.05.
Tables 2, 3, 4, 5, 6, and 7 present the experimental results on
the six datasets, respectively. A value in tables less than 0.05
represents that RLLSimpute_L2 obtains smaller RMSE than
its competitor, and a value greater than 0.05 means that
there is no statistical difference between RLLSimpute_L2
and the competing method.

According to the results in Tables 2, 3, 4, 5, 6, and 7, we
can observe that RLLSimpute_L2 almost demonstrates the
best performance compared with the referenced methods,
which further proves the effectiveness of L2 regularization
algorithm used in RLLSimpute_L2. Specifically, RLLSim-
pute_L2 consistently displays a smaller RMSE than any
other method on GDS1761 under any missing rate. It is
necessary to note that GDS1761 has 64 samples, this

TABLE 2
Results of Significance Test on GDS38

Missing
rate (%)

KNN
impute

SKNN
impute

IKNN
impute

BPCA
impute

LLS
impute

SLLS
impute

Shrinkage
impute

RLLSimpute_L1 BS impute MICE

1 0.0890 0.2413 0.2413 0.0890 0.6232 0.7913 0.7913 0.0008 0.0002 0.0002
5 0.0022 0.0073 0.0173 0.0091 0.1212 0.2730 0.1620 0.0002 0.0002 0.0002
10 0.0002 0.0006 0.0046 0.0036 0.0010 0.1859 0.0010 0.0002 0.0002 0.0002
15 0.0002 0.0004 0.0022 0.0028 0.0013 0.0376 0.0013 0.0002 0.0002 0.0002
20 0.0002 0.0003 0.0036 0.0022 0.0008 0.0890 0.0013 0.0002 0.0002 0.0002

TABLE 3
Results of Significance Test on GDS39

Missing
rate (%)

KNN
impute

SKNN
impute

IKNN
impute

BPCA
impute

LLS
impute

SLLS
impute

Shrinkage
impute

RLLSimpute_L1 BS impute MICE

1 0.0452 0.0539 0.0376 0.1405 0.8501 1.0000 0.9097 0.0010 0.0002 0.0002
5 0.0010 0.0036 0.0036 0.0211 0.4727 0.5708 0.3075 0.0002 0.0002 0.0002
10 0.0002 0.0008 0.0017 0.0046 0.1620 0.4727 0.1212 0.0002 0.0002 0.0002
15 0.0002 0.0002 0.0002 0.0004 0.0058 0.4274 0.0058 0.0002 0.0002 0.0002
20 0.0002 0.0002 0.0002 0.0002 0.0008 0.1859 0.0013 0.0002 0.0002 0.0002

TABLE 4
Results of Significance Test on GDS1761

Missing
rate (%)

KNN
impute

SKNN
impute

IKNN
impute

BPCA
impute

LLS
impute

SLLS
impute

Shrinkage
impute

RLLSimpute_L1 BS impute MICE

1 0.0002 0.0002 0.0003 0.0008 0.0002 0.0008 0.0002 0.0017 0.0002 0.0002
5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
10 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
15 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
20 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

TABLE 5
Results of Significance Test on GDS2967

Missing
rate (%)

KNN
impute

SKNN
impute

IKNN
impute

BPCA
impute

LLS
impute

SLLS
impute

Shrinkage
impute

RLLSimpute_L1 BS impute MICE

1 0.0002 0.0002 0.0002 0.1041 0.2123 0.2730 0.2123 0.0002 0.0002 0.0002
5 0.0002 0.0002 0.0002 0.0539 0.0008 0.0539 0.0017 0.0002 0.0002 0.0002
10 0.0002 0.0002 0.0002 0.0173 0.0002 0.0073 0.0002 0.0002 0.0002 0.0002
15 0.0002 0.0002 0.0002 0.0008 0.0002 0.0006 0.0002 0.0002 0.0002 0.0002
20 0.0002 0.0002 0.0002 0.0036 0.0002 0.0004 0.0002 0.0002 0.0002 0.0002
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number is larger than any other dataset’s number of sam-
ples. So, it seems that RLLSimpute_L2 prefers to show a
better result when the number of samples in dataset is
large enough. Furthermore, on GDS3835, BPCAimpute
shows results close to that of RLLSimpute_L2 with a miss-
ing rate larger than 10 precent, but RLLSimpute_L2 out-
performs it when the missing rate is as low as 5 precent. In
addition, KNNimpute, SKNNimpute and IKNNimpute
always perform worse than RLLSimpute_L2, which proves
that these methods simply using the weighted averaging

strategy are not sufficient to precisely estimate missing
values in microarray data.

5.2.5 Pearson Correlation Coefficient

To show the effectiveness of different imputation methods
in preserving the original data structure, we conduct experi-
ments with a representative 5 precent missing rate for the
eleven methods. Fig. 6 presents corresponding experimental
results for different methods. The X-axis denotes the index
of a sample and Y-axis represents the Pearson correlation

TABLE 6
Results of Significance Test on GDS3835

Missing
rate (%)

KNN
impute

SKNN
impute

IKNN
impute

BPCA
impute

LLS
impute

SLLS
impute

Shrinkage
impute

RLLSimpute_L1 BS impute MICE

1 0.0002 0.0002 0.0002 0.9097 0.0211 0.0539 0.0257 0.0002 0.0002 0.0002
5 0.0002 0.0002 0.0002 0.4727 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
10 0.0002 0.0002 0.0002 0.6776 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
15 0.0002 0.0002 0.0002 0.0640 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
20 0.0002 0.0002 0.0002 0.0640 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

TABLE 7
Results of Significance Test on GDS4831

Missing
rate (%)

KNN
impute

SKNN
impute

IKNN
impute

BPCA
impute

LLS
impute

SLLS
impute

Shrinkage
impute

RLLSimpute_L1 BS impute MICE

1 0.1405 0.1405 0.1405 0.7913 0.9097 0.7337 0.6776 0.0002 0.0008 0.0058
5 0.0113 0.0452 0.0640 0.4274 0.1859 0.4274 0.1859 0.0002 0.0002 0.0002
10 0.0073 0.0257 0.0539 0.5708 0.0890 0.6232 0.1212 0.0002 0.0002 0.0002
15 0.0003 0.0073 0.0113 0.4961 0.0091 0.5708 0.0140 0.0002 0.0002 0.0002
20 0.0002 0.0013 0.0058 0.2729 0.0022 0.3075 0.0028 0.0002 0.0002 0.0002

Fig. 6. Pearson correlation coefficients of different imputation methods on the six datasets.
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coefficient. For Fig. 6, we can observe that RLLSimpute_L2
consistently achieves better performance than the other
imputation methods. This means that RLLSimpute_L2 can
better preserve the structure of original dataset.

In addition, from Figs. 5 and 6, we can see that methods
with a larger RMSE may better preserve data structure. For
example, LLSimpute has a smaller RMSE than BPCAimpute
on GDS38, while BPCAimpute achieves a higher Pearson
correlation coefficient. This is because RMSE reflects the
overall degree of deviation of imputation, while Pearson
correlation coefficient works at the sample level.

5.2.6 Biomarker List Concordance Index

Biomarker list concordance index (BLCI) is used for measur-
ing the preservation of differentially expression genes that
are selected from the original microarray data and the esti-
mated microarray data [4]. Fig. 7 presents the experimental
results of BLCI for different imputation methods. The X-axis
represents the missing rates, and the Y-axis denotes the
BLCI. From Fig. 7, we see a general trend on all experimen-
tal datasets for all methods: a larger missing rate leads to a
lower BLCI, and BLCI decreases quickly with the increase of
missing rates. For example, at the missing rate of 1 precent,
most imputation methods obtain a BLCI as high as 0.95 and
even reach up to 0.97; but at the missing rate of 20 precent,
BLCI decrease to 0.52. This indicates that a larger missing
rate brings a greater challenge to the identification of differ-
entially expressed genes. We can also observe that RLLSim-
pute_L2 and BPCAimpute generally obtain a higher BLCI
than other nine imputation methods. In comparison with
BPCAimpute, RLLSimpute_L2 obtains a slightly lower
BLCI at a low missing rate, and performs better when work-
ing on a dataset with high missing rates. This is mainly

because that a low missing rate comes with less information
loss, in which situation that BPCAimpute can utilize the
covariance structure. Hence, the deterioration of BPCAim-
pute in imputation performance is not surprising for the
case of a high missing rate. Similar to the case of RMSE, we
can observe that least squares-based methods perform bet-
ter than nearest neighbor-based method.

Overall, according to the above extensive experimental
results and analysis, we conclude that compared with one
global learning-based method (BPCAimpute), three nearest
neighbor-based methods (KNNimpute, SKNNimpute, and
IKNNimpute), three least squares-based methods (LLSim-
pute, SLLSimpute, and ShrinkageLLS), and RLLSimpute_L1,
RLLSimpute_L2 achieves smaller root mean squared errors
in the statistical view and better preserves the structure of
original dataset in biological view. In addition, compared
with RLLSimpute_L2, BPCAimpute is sensitive to the type of
microarray data being analyzed. When dominant local simi-
larity structures exist among genes, BPCAimpute is generally
less accurate than RLLSimpute_L2. Even though BPCAim-
pute shows slightly better performance thanRLLSimpute_L2
on the dataset having covariance structure, RLLSimpute_L2
tends to obtain better imputation results than BPCAimpute
when a high percentage of entries aremissing.

5.2.7 Time Complexity Analysis

For a microarray dataset with m genes and n samples
ðm � nÞ, suppose that the number of used neighbors is k,
then the time complexity of KNNimpute is Oðm2nÞ and the
time complexity of SKNNimpute is Oðm log mþmn logmÞ.
Suppose the number of iterations of IKNNimpute is i, then
its time complexity is Oðmnþ imn log mÞ. Least squares
based methods take Oðk3Þ to calculate the inverse of a k 
 k

Fig. 7. BLCI vs. different missing rates on the six datasets.

990 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 16, NO. 3, MAY/JUNE 2019

Authorized licensed use limited to: Foshan University. Downloaded on March 07,2023 at 03:02:07 UTC from IEEE Xplore.  Restrictions apply. 



matrix, then the time complexity of LLSimpute, Shrinka-
geLLS, and SLLSimpute is Oðmðmnþ k3ÞÞ, Oðmðmnþ
k3Þ þmÞ, and Oðm log mþmðmnþ k3ÞÞ, respectively. For
RLLSimpute_L2 and RLLSimpute_L1, the time complexity
of lasso or ridge regression is Oðk3 þ k2nÞ. So, the time com-
plexity of RLLSimpute_L2 and RLLSimpute_L1 are both
Oðmðk3 þ k2nþmnÞ þm log mÞ, where Oðm log mÞ is the
time complexity for sorting genes. BPCAimpute is built on
probabilistic principal component analysis and its time com-
plexity is Oðmðmn2 þmnðn� 1ÞÞÞ ¼ Oðm2n2Þ. For BSim-
pute, its time complexity is OððunþmÞmqÞ, where u
represents the number of iterations in selecting similar genes
and q represents the number of missing entries. For MICE
using a classification and regression tree as the building
block, its time complexity is Oðinm2 log mÞ, where i is the
number of iterations. Herein, we can conclude the followings.
(1) MICE has the worst time complexity and BSimpute has the
best time complexity. (2) BPCAimpute has higher time com-
plexity than that of RLLSimpute_L2 and RLLSimpute_L1. (3)
RLLSimpute_L2 and RLLSimpute_L1 cost more time than
least squares-based methods (LLSimpute, SLLSimpute, and
ShrinkageLLS), but they have the same order of magnitude.
(4) Nearest neighbor-based methods are more time-efficient
than least squares-basedmethods.

6 CONCLUSION

Microarray missing value imputation is a challenging, yet
meaningful research field in the analysis of gene expression
profiles. Although there is a wealth of imputation methods
available, most local learning-based methods tend to suffer
from the over-fitting problem. In this study, we proposed a
regularized local learning-based method for missing value
imputation. Specifically, we trained a L2 Regularized Local
Least Squares imputation model (RLLSimpute_L2) between
the target gene and its neighbors for estimating the missing
values of the target genes. To utilize previously estimated
values, RLLSimpute_L2 imputes the missing values in
ascending order according to the missing rates associated
with each target gene. Besides, we explored the use of L1

regularization and proposed the L1 Regularized Local Least
Squares imputation model (RLLSimpute_L1). Finally, we
conducted experiments on six microarray datasets and com-
pared RLLSimpute_L2 and RLLSimpute_L1 with nine state-
of-the-art imputation methods in terms of three evaluation
metrics. Experimental results demonstrate the effectiveness
of regularization techniques in mitigating the risk of over-
fitting and the superiority of RLLSimpute_L2 over its com-
peting ones in missing value imputation.

For the future work, because the distribution of missing
values is an important factor for evaluating an imputation
method, investigating the relationship between the perfor-
mance of an imputation method and a specific distribution
of missing values remains a topic for future research. Sec-
ond, the proposed imputation algorithm could be applied
to other fields that also suffer from the problem of missing
values such as proteomics and RNA-seq datasets [44]. Typi-
cally, RNA-seq data, obtained with massively parallel
sequencing methods in transcript analysis, are the time
series RNA sequencing data and may have missing read
counts. Such data have similar expression profiles and

exhibit local similarity structure within a cell population,
indicating that we can utilize correlations among genes or
cells as a basis for missing value estimation. On the other
hand, RNA-seq data measure the gene expression using
read counts rather than intensities of microarray data. That
is, we need to consider the countability property of RNA-
seq data for missing value imputation. Therefore, how to
apply the proposed method to RNA-seq data and to further
test its performance remains another topic.
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