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a b s t r a c t 

Gene expression profiles are being used to categorize disease specific genes and classify different tumor 

subtypes at the molecular level. Due to the inherent nature of these data having high dimensionality and 

small sample sizes, current conventional machine learning and statistical techniques have drawbacks in 

achieving satisfactory predictive classification performance in clinical samples. The typical approach to 

handling this situation is to eliminate noisy and redundant genes from the original gene space. There 

are currently multiple gene selection methods available, but most of them seek to find a common subset 

of genes for all tumor subtypes and fail to reflect the unique characteristics of each subtype. Conse- 

quently, in this study, we propose a general framework that aims to identify subset of genes for each 

tumor subtype, and also give another gene selection framework that combines the obtained subtype spe- 

cific gene subsets into a single gene subset. We then present a corresponding classification model for 

distinguishing different tumor subtypes, and implement three specific gene selection algorithms within 

the two frameworks. Finally, extensive experimental results on the six benchmark microarray data val- 

idate the proposed tumor subtype dependent selection process to predict and rank specific molecular 

biomarkers to define tumor subtypes. This new process contributes significantly to the enhancement of 

tumor-predictive classification performance. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Tumor metastasis and subsequent mortality place a heavy so-

cial and fiscal burden on our society. Early diagnosis of tumor is

more cost effective and plays a significant role in better manage-

ment, treatment, and outcomes [1] . Traditional diagnostic meth-

ods include cell based observational and biochemical examination

in an organ based context, both of which rely on vast and varied

domain knowledge of pathological research. Guidelines and stan-

dards of care have progressed yet maintain inherent disadvantages

of bias, time, and limited accuracy. Gene mutation and subsequent

loss of function or alteration in molecular pathways is a defin-

ing occurrence for most metastatic events, and measuring the dif-

ferential gene expression patterns in tumor cells compared with

those of a normal population is increasingly accepted to diagnose
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ancer, define treatments, and predict outcomes in personalized

ancer care plans [2] . 

The rapid development and wide use of microarray technol-

gy enables simultaneous measures of expression perturbations of

housands of genes under multiple experimental conditions. These

arly multivariate analyses have increased our capacity to iden-

ify disease genes, drug targets, and tumor subtypes [2–5] . Accord-

ngly, various methods of analysis, including machine learning al-

orithms, have been created to compare gene expression profiles.

he intrinsic nature of these microarray data collections is usually

haracterized by high dimensionality (with thousands of gene ob-

ervations over time and context) and often using a small sample

ize of specimens or patients to limit the statistical power for clin-

cal use [6] . This multiplicity of classifiers and data dimensional-

ty often causes pattern profiles to be overfit and thus predictions

ill suffer from poor generalization capacity [7] . There are studies

uggesting that there are a few important genes that are associ-

ted with a specific classification of cancer subtypes and may be

ideally) submitted for Food and Drug Administration (FDA) valida-

ion and used for diagnosis [8] . Also, the affected gene space often
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onsists of a large number of noisy and redundant genes, which

an diminish the performance of a classifier [9–11] . For example,

 -nearest-neighbor algorithm is sensitive to irrelevant features in

lassification [12] . One feasible way to mitigate this problem is to

elect a subset of discriminant genes from the original gene space

y filtering noisy and redundant genes using effective f eature se-

ection methods [13,14] . 

Gene selection, also known as feature selection and variable se-

ection, is defined as a process of selecting a small subset of genes

hat contains the most discriminant information with well-defined

valuation metrics [6] . In addition to reducing the dimensional-

ty of original gene space, effective gene selection methods bring

s significant enhancements of quality measures for defining gene

ets that validate the drug targets in biological and medical re-

earch. These enhancements include better generalization capacity

f the constructed classifier, reducing the classifier training time,

nd improving the interpretability of obtained biomarkers [15] . 

According to whether using a classifier to evaluate the quality

f a candidate feature in the feature selection process, existing fea-

ure selection methods can be broadly divided into four categories:

1) filter methods, (2) wrapper methods, (3) embedded methods,

nd (4) hybrid methods [16,17] . Filter methods are independent of

 classification model and measure the quality of a feature, or a

ubset, using only the intrinsic nature of training samples. Filter

ethods are flexible in combination with various classifiers and

ave lower computational complexity. They also have better gener-

lization ability [16] . Furthermore, commonly used metrics in filter

ethods mainly include distance, consistency, dependency, and in-

ormation theory-based metrics [18] . Distance-based methods de-

ne separability as the metric and try to find those features that

an best discriminate the target class. One such method is the Re-

iefF algorithm [19] . Consistency-based methods use the inconsis-

ency rate as the criterion and seek to select a subset of features

ith better consistency, such as Focus and LVF algorithms [20] .

ependency-based methods evaluate the importance of candidate

eatures with statistical theory, and there are a variety of meth-

ds available such as Pearson correlation coefficient, partial least

quares, and Fisher score [21,22] . Information theory based feature

electors have efficiency and effectiveness because of their capac-

ty in capturing higher order statistics of data and reflecting the

on-linear relationships between variables [23] . Consequently, re-

earchers have proposed and developed a number of feature se-

ectors from the view of mutual information, including informa-

ion gain, minimum redundancy maximum relevance (mRMR) [24] ,

nd fast correlation based filter (FCBF) [25] . In contrast, wrapper-

ased methods are specific to a given learning algorithm to ex-

ending non-filter features of selection to evaluate the quality of a

elected candidate. These methods often use the classification er-

or rate or classification accuracy as an evaluation criterion [26–

8] . Due to the specific interaction between the obtained features

nd the learning algorithm, wrapper methods tend to obtain bet-

er classification results but at the cost of high time complexity

27] . Embedded methods are essentially a special case of wrap-

er methods and more tightly coupled with a specified learning

lgorithm. Feature subsets are generated during training the clas-

ifier, which makes embedded methods usually more tractable and

ime efficient than wrapper methods. Decision tree and Lasso algo-

ithms are two typical embedded cases [29,30] . Besides, a hybrid

cheme has been proposed to take advantage of both filter and

rapper methods, and researchers have proposed to combine filter

nd wrapper methods [31,32] . Essentially, a filter is initially used

o remove a large number of noisy and redundant features from

he original feature space, and then a wrapper method is used to

nd a discriminant feature subset from the reduced subset [33] . 

According to the final output style, we can group existing fea-

ure selection methods into feature ranking and feature subset se-
ection categories. Feature ranking methods return a ranked list of

he original features in descending order according to the predic-

ive power of each feature [34] . We are required to specify the

umber of how many features are to be selected after ranking. Al-

ernatively, we can determine the optimal size of a feature subset

ith the help of a learning algorithm. Feature ranking methods in-

lude single feature ranking and multiple feature ranking methods.

he former evaluates the quality of each candidate feature individ-

ally, and does not consider the redundancy and interaction be-

ween features [19] . These feature ranking methods often fail to

btain a feature subset of high quality. Multiple feature ranking

ethods take the relationship between the candidate feature and

reviously selected features into account in the process of feature

election [25] . Ranking methods belonging to this category have

 sequential forward or backward selection scheme to rank origi-

al features [6] . Unlike feature ranking methods, feature subset se-

ection methods explicitly or implicitly consider the relevance and

edundancy between features, and finally return a feature subset

ithout involving a further step to determine the optimal size [25] .

Currently, there are a wealth of feature selection methods avail-

ble [35–38] , but most of them seek to find a common subset

f genes for subtypes within a defined pathology, and fail to re-

ect the unique characteristics of each subtype based on molec-

lar differences. In fact, a unique subset of genes is likely to exist

ithin each tumor subtype. Identifying these molecularly based tu-

or subtypes will increase the clinical efficacy of treatments with

uch predictive biomarkers [2,39] . Obtaining molecular subtype de-

endent biomarkers helps design a personalized treatment plan.

hese plans have been shown to often reduce the toxicity and side

ffects in treatment, concurrent with significant slowing of tumor

rogression. These biomarkers also accelerate structural and cell-

ased refinement in drug development research on these molecu-

ar subtypes, reducing the time and cost of bring drugs to clinic. 

There are studies from related fields that propose to select a

ossible different feature subset for each class. For example, de

annoy et al. propose a method to perform class-specific feature

election in multiclass support vector machines and experimen-

ally validate its performance [40] . Zhou and Wang use class sep-

rability measure to select different feature subsets for different

lasses and compare their method with class independent feature

election method by applying the method on several biomedical

ata with support vector machine [41] . A major limitation of these

ethods is that they are related to the use of a particular classi-

er, which limits its applicability. To alleviate this problem, Pineda-

autista et al. propose a class specific feature method that can

e used with any classifiers and they use classifier ensemble to

lassify an unseen sample. Their experimental results on low di-

ensional datasets show the effectiveness of the proposed method

42] . However, classifying new test samples under an ensemble

ramework without utilizing the confidence of each sub-classifier

ay makes poor decisions when we face the problem of voting

onflict. Besides, the aim of these studies is to return multiple fea-

ure subsets for feature analysis and classification model construc-

ion, and few studies, to the best of our knowledge, explore the fu-

ion of multiple class-specific feature subsets and further evaluate

he effectiveness of these combined features in classification. Fur-

hermore, they conduct experiments on low dimensional datasets

ithout considering a more difficult case that is characterized by

igh dimensionality and small sample sizes. Accordingly, in this

tudy, we propose to select gene profiles that are associated tumor

ubtypes, enabling us to define unique genes for a tumor subtype

s well as common genes for all tumor subtypes. We will enhance

he performance in classifying different tumor subtypes and fur-

her reduce the chance of partially overfitting in future algorithms.

he main contributions of this study are as follows: 
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Fig. 1. An illustration to the two proposed feature selection frameworks. (a) subtype 

dependent feature selection framework; (b) fusion based feature selection frame- 

work. Subtype dependent framework is a building block of fusion based framework 

with an additional operation of subset fusion. 
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1) We propose a general framework for subtype dependent

biomarker identification that returns a filtered profile of genes

for each tumor subtype. Subsequently, we provide another gene

selection framework, called fusion based gene selection that

merges the obtained subtype dependent gene profiles and fi-

nally returns a single defining gene profile. We then present

corresponding classification (training and testing) model, asso-

ciated with subtype dependent method, for distinguishing dif-

ferent tumor subtypes. 

2) Under each of the frameworks, we implemented three specific

gene selection algorithms with Fisher score, mRMR and FCBF

as the building blocks, respectively. We have detailed how to

obtain the optimal feature subset for feature ranking based as

well as feature subset based feature selection methods in this

study. 

3) We integrate three classification models with different metrics,

including support vector machine, Naïve bayes, and k -nearest-

neighbor, into the framework to construct classifiers, and detail

how to estimate the confidence that a sample belongs to a spe-

cific class to solve the problem of voting conflict. 

4) We tested the proposed methods on six benchmarked mi-

croarray datasets that contain multiple tumor subtypes, and

compared the performance of support vector machine, Naïve

bayes, and k -nearest-neighbor. Extensive experiments demon-

strate the superiority of subtype-dependent feature selection

methods over subtype-independent feature selection methods

and the superiority of support vector machine over Naïve bayes

and k -nearest-neighbor in obtaining a feature subset of high

quality. 

The paper is structured in the following way. Section II details

the proposed subtype dependent biomarker identification frame-

work and its fusion version, and present corresponding subtype-

dependent classification model. Section III illustrates the experi-

mental data, three baseline feature selectors and support vector

machine classifier, as well as the evaluation metrics. Section IV

presents the experimental results. The last section concludes this

study. 

2. Subtype dependent gene selection and tumor classification 

framework 

In this section, we first present the two proposed gene selec-

tion frameworks for biomarker identification: subtype dependent

framework and its fusion version. We then show the classifier

training and testing model under the subtype dependent frame-

work. 

2.1. Notations 

In the analysis of gene expression profiles, we denote the mi-

croarray data as a matrix. Generally, in this study, we use X ∈ R 

m ×n 

to represent the data matrix, where m is the number of samples

and n is the number of genes. Specifically, we use g 1 , g 2 , ..., g n to

represent the n genes and use g 1 , g 2 , ..., g n ( g i ∈ R 

m , 1 ≤ i ≤ n ) to

represent its vector forms. We also use x 1 , x 2 , ..., x m 

to denote the m

instances, and x 1 , x 2 , ..., x m 

( x i ∈ R 

n , 1 ≤ i ≤ m ) are corresponding

vectors. We then have X = ( g 1 , g 2 , ..., g n ) = ( x 1 , x 2 , ..., x m 

) T . Sup-

pose that L = { l 1 , l 2 , ..., l C } denotes the label set with C different

classes. We use y ∈ R 

m ×1 to represent corresponding label vec-

tor associated with the data matrix, and use y 1 , y 2 , ..., y m 

( y i ∈ L ,

1 ≤ i ≤ m ) to denote the target values of the m instances. Then, we

can denote the training set with m samples as D = { ( x i , y i ) | x i ∈
X , y ∈ L, 1 ≤ i ≤ m } . 
i 
.2. Subtype dependent biomarker identification 

Most of existing feature selection methods select a gene sub-

et for all tumor subtypes. For the convenience of illustration, we

ame this kind of method as subtype independent feature selec-

ors. Alternatively, subtype dependent methods aim to find a sub-

et of genes for each tumor subtype, primarily consisting of two

teps as shown in Fig. 1 . In the first step, we are required to con-

ert the C -class classification problem into C two-class classifica-

ion problems. Specifically, for problem h (1 ≤ h ≤ C ), we obtain cor-

esponding training set D h by coding the class label of instance x i 
( x i ∈ R 

n , 1 ≤ i ≤ m ) with the following strategy as represented in

ormula (1) : label it with + 1, if x i belonging to class h originally;

therwise, label it with −1, if x i belonging to other classes. We

all this step the label binarization. Then, we can obtain C training

ets { D 1 , ..., D h ..., D C } associated with the C two-class classification

roblems. 

odin g h (x ) = 

{
+1 , y i = h 

−1 , y i � = h 

(1)

After obtaining the training set D h , in the second step, we con-

uct feature selection for the binary classification problem h to

btain its optimal gene subset GS h . In this stage, various subtype

ndependent feature selectors, also called traditional feature se-

ectors, can be used on D h to search for the best gene subset

S h by working on a binary class dataset rather than on a multi-

lass dataset. Specifically, for feature subset based feature selection

ethods (e.g., fast correlation based filter), they generally return a

ubset of features as the finally obtained feature subset. For feature

anking based methods (e.g., fisher score), they return a ranking of

he original features according to the importance of each feature.

o obtain the finally obtained feature subset, we pre-select p top-

anked features, sequentially evaluate p feature subsets, and select

he one with best classification performance as the finally obtained

eature subset. We can then obtain C gene subsets { GS 1 , ..., GS h ...,

S C }, each of which is related to a specific tumor subtype. 

To a further step, we can merge the C gene subsets using for-

ula (2) . This is the union of the C gene subsets, which covers

he discriminant genes of each tumor subtype and should pro-

ide quality classification of tumors. We note this scheme as fusion

ased gene selection framework, and Fig. 1 presents the diagram.
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Fig. 2. Subtype dependent classifier training. 
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Fig. 3. Classifying test samples using the trained subtype-dependent classifier. 

Table 1 

Experimental dataset descriptions, including the sample size, the 

gene size, and the number of classes. 

ID Dataset #Samples #Genes #Classes #SFR 

1 Leukemia2 72 11225 3 0.006 

2 Brain2 50 10367 4 0.005 

3 Brain1 90 5920 5 0.015 

4 9_Tumor 60 5726 9 0.010 

5 11_Tumor 174 12533 11 0.014 

6 14_Tumor 308 15009 26 0.021 
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C ⋃ 

h =1 

G S h (2) 

.3. Subtype dependent classification model 

One of the main purposes of feature selection is to build a

obust classifier for classifying tumor subtypes. Also, the perfor-

ance of the classifier built on the obtained gene subsets can

e used for effectiveness evaluation of the proposed method. In

his subsection, we detail the process of how to construct a corre-

ponding classifier and how to apply it for tumor classification. 

.3.1. Subtype dependent classifier training 

For the classification problem h , after subtype dependent fea-

ure selection, we can obtain a corresponding training set D h and

he optimal gene subset GS h . Then, our task is to train a binary

lassifier on D h . Specifically, the classifier is trained on D h pro-

ected over the selected gene subset GS h , and we get a model

odel h that can be used to predict whether a test sample belongs

o class h . In this step, we can use various learning algorithms, e.g.,

aïve bayes, k nearest neighbor, and support vector machine. Re-

eating the above process, we obtain multiple C classifiers. Finally,

e get the classification model by combining these classifiers to-

ether as shown in Fig. 2 . 

.3.2. Classification with subtype dependent classifier 

To conduct predictions, we take the test sample x as an input

o the classification model. Then, each classifier Model h predicts

hether x belonging to class h . After all the C classifiers have made

heir own predictions, we can determine to assign which label to x .

owever, there may exists the situation where x is assigned multi-

le classes (e.g. Model i labels x as class i , while Model j claims that

he label of x is class j ( i � = j )), also called voting conflict, which

akes it difficult to determine a single label. It is also possible that

ll the C classifiers reject x . To mitigate the above problems, we

arse the classifiers with a probability output that can be used to

stimate the confidence that x belongs to a certain class. Specifi-

ally, for classifier Model h , it first projects x over GS h and gets x ( h ) .

hen Model h works on x ( h ) and outputs the predicted label label h 
nd probability estimation prob h . Also, label h takes the value of 1 if

odel h predicts that x belongs to class h ; otherwise, label h equals

. For C classifiers, we have C groups of outputs (shown in Fig. 3 ).

ith this, the predicted label of x is determined by the maximum

robability rule (3) . 

 abel (x ) = max 
i 

{ labe l i ∗ pro b i , 1 ≤ i ≤ C} (3)
Particularly, if the predicted labels of the C classifiers are all ze-

os, we determine the label of x with formula (4) , which is associ-

ted with the classifier having the minimal confidence in making

 prediction of zero. 

 abel (x ) = min 

i 
{ pro b i , 1 ≤ i ≤ C} (4)

. Experimental setup 

In this section, we first describe the microarray data used in

ur experiments, and then introduce three gene selection methods

hat are building blocks of the two proposed frameworks. Finally,

e present the widely used support vector machine classifier, and

ive the evaluation metrics to measure the performance of the pro-

osed methods. 

.1. Microarray data 

In our experiments, six publicly available benchmark gene ex-

ression profiles are used in this study [43] , and they are all re-

ated to multi-category classification problems. A brief summary to

he six datasets is presented in Table 1 . The last column SFR de-

otes the ratio between the number of samples and the number

f genes. From SFR, we can see that there exists a great difference

etween the number of samples and the number of genes in each

icroarray data. Constructing a classifier on such a dataset eas-

ly leads to overfitting. We can also see that the dimensionality of

lasses in these datasets ranges from 3 to 26, which has previously

osed a great challenge in computer capacity and predictive qual-

ty for parsing tumor subtypes for biomarker testing. Particularly,

or 14_Tumor microarray data, it consists of 26 subtypes, and has

 SFR ratio of 0.021. All the microarray datasets used in this study

an be downloaded from http://www.gems-system.org/ . 

http://www.gems-system.org/


108 A. Wang et al. / Knowledge-Based Systems 146 (2018) 104–117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

a

J  

3

 

m  

a  

fi  

r  

m  

m  

t  

o

S  

D  

t  

R

 

m  

v

D  

f  

h

D  

f  

s  

M

S  

S  

 

f  

h  

f  

I  

w

S  

 

M  

t  

a  

c  

a

3

 

t  

m  

s  

t  

fi  

i  

T  

fi  

c  

c  
3.2. Baseline feature selection method 

As we discussed, there are a variety of gene selection methods

that are suitable for the proposed subtype dependent gene selec-

tion framework. In this study, we explore to use three proven ef-

fective feature selectors with different metrics, covering both fea-

ture ranking and feature subset selection methods, to evaluate the

quality of candidate features. There are Fisher score, mRMR, and

FCBF. 

3.2.1. Fisher score 

Statistical metrics to rank features are accomplished with the

Fisher score, a dependency-based filter method. Fisher score as-

signs a higher weight to a feature with similar values to instances

from the same class and different values to instances from differ-

ent classes [21] , and separates data points into different classes

and clusters the data points within the same class. The evaluation

metric that Fisher score uses to measure the importance of a can-

didate feature g is given by the following formula: 

J(g ) = 

∑ C 
j=1 n j ( μ j − μ) 

2 

∑ C 
j=1 n j σ

2 
j 

(5)

where μ is the mean of the gene g , n j is the number of samples

in class j, μj and σ 2 
j 

are the mean and the variance of the samples

in class j , respectively. 

Therefore, Fisher score provides a basis to rank and cluster the

genes. The greater Fisher score, the more important it is in con-

tributing to the classification performance. Fisher score ranks genes

in descending order. 

3.2.2. Minimal redundancy maximal relevance 

The minimal Redundancy Maximal Relevance (mRMR) method

is built on information theory, so it has the capacity to capture

higher order statistics of data and reflect non-linear relationships

between variables [24] . In information theory, mutual information

measures the amount of information shared by two discrete ran-

dom variables x and y . This can be used to measure the relevance

between two variables. Mutual information is defined as: 

I(x ; y ) = 

∑ 

x ∈ x 

∑ 

y ∈ y p(x, y ) log 
p(x, y ) 

p(x ) p(y ) 
(6)

where p ( x ) is the probability distribution of variable x in x and p ( x,

y ) is the joint probability distribution of variable x and y in x and

y , respectively. 

To select a subset of genes that are relevant to the disease with

minimal redundancy, mRMR uses the following cost function to

evaluate the quality of a candidate gene g given the selected subset

S , 

J(g ) = I (g ; y ) − 1 

| S | 
∑ 

s ∈ S I (g ; s ) (7)

in which | S | represents the number of selected genes, y is the

target class, and in this study, y represents the tumor subtypes,

I ( g ; y ) denotes the relevance between gene g and class y , and

I ( g ; s ) measures the redundancy between genes s and g .Criteria

of the mRMR select the gene that is maximally relevant to the dis-

ease and lest redundant to those already selected. Starting from

an empty set and working sequentially forward, mRMR initially

selects the gene that is most relevant to the disease and parsed

into the selected subset, subsequently removing it from the candi-

date set; then (7) is used to choose the next gene that maximizes

J ( g ) into the selected subset. The process is continued until all the

genes are ranked or a pre-defined number of genes are obtained. 

The mutual information difference form of mRMR, used by Peng

et al. [24] , also provides a quotient form (8) as well, which ranks

features in descending order. Both of products of the mRMR are
eature ranking methods. In this study, we use its difference form

s a representative. 

(g ) = I (g ; y ) / 
(

1 

| S | 
∑ 

s ∈ S I (g ; s ) 
)

(8)

.2.3. Fast correlation based filter 

Fast correlation based filter (FCBF) is a feature subset selection

ethod, and selects features by identifying high relevant features

nd simultaneously removing redundant features [25] . FCBF de-

nes the relevance and redundancy between two features and the

elevance of a feature to the target class on the basis of the sym-

etric uncertainty (9) . Symmetric uncertainty (SU) is a normalized

utual information and can be used to measure the relevance be-

ween two variables g and y with (9) . H (X) measures the entropy

f a variable X. 

U(g , y ) = 

2 ∗ I(g ; y ) 

H(g ) + H(y ) 
(9)

efinition 1 ( C-Relevance ) . Given a predictive feature g and the

arget variable y , the relevance between them is referred to as C -

elevance , denoted by SU ( g, y ). 

A feature with a larger C-Relevance value contains more infor-

ation about the class than a feature with a smaller C-Relevance

alue. 

efinition 2 ( F-Relevance ) . The correlation between two predictive

eatures g and h is referred to as F-Relevance , and noted as SU ( g,

 ). 

efinition 3 ( Approximate Markov blanket ) . Given two predictive

eatures g and h , and the target variable y , if both (10) and (11) are

atisfied, then h is redundant to g . g is called an approximate

arkov blanket of h . 

U(g , y ) ≥ SU(h , y ) (10)

U(g , h ) ≥ SU(h , y ) (11)

According to Markov blanket technique [25] , we know that, in

eature selection, if g is selected, then it is not necessary to choose

 as it can not provide extra information beyond the information

rom g .For FCBF, selection of final feature subset requires two steps.

n the first step, FCBF filters out those features whose relevance

ith the target class is less than a predefined threshold. 

U(g , y ) < γ (12)

FCBF then eliminates redundant features using approximate

arkov blanket technique in the second step. FCBF can then ob-

ain a subset of features that are highly relevant to the target class

nd less redundant to each other. In this study, we set γ = 0 , indi-

ating that only features that are independent from the target class

re removed in the first stage. 

.3. Support vector machine 

They are many learning algorithms with probability estimation

hat may be integrated into the subtype dependent classification

odel as we have defined. In this study, we selected the proven

upport vector machine (SVM). SVM is a state-of-the-art classifica-

ion and regression tool, and has been successfully applied in many

elds, such as computer vision, text classification and bioinformat-

cs [44] . SVM was originally designed to parse binary classification.

he traditional binary classification problem was solved in SVM by

nding an optimal separating hyperplane that can separate two

lasses with a maximal margin between the two classes. Specifi-

ally, assume that we have a training set with m labeled samples
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Table 2 

Confusion matrix for three-class classification problem. 

True label 

class1 class2 class3 sum 

Inferred Label class1 TP 11 FP 12 FP 13 NI 1 
class2 FP 21 TP 22 FP 23 NI 2 
class3 FP 31 FP 32 TP 33 NI 3 
sum NT 1 NT 2 NT 3 Total 
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 ( x i , y i ) } m 

i =1 
, in which x i ∈ R 

n is an instance, and y i ∈ {−1 , 1 } is its

lass label. To separate the two classes, SVM aims to solve the fol-

owing optimization problem (13) . 

 

 

 

 

 

 

 

min 

1 
2 
|| w | | 2 + λ

m ∑ 

i =1 

ξi 

s.t. 

y i [( w 

T x i ) + b] ≥ 1 − ξi , i = 1 , 2 , ..., m 

ξi ≥ 0 , i = 1 , 2 , ..., m 

(13) 

In (13) , λ> 0 is the penalty parameter to make a tradeoff be-

ween the training error and the margin. 

Particularly, for the non-linear case, SVM can map the data

oints to a higher dimensional space, and find the optimal sepa-

ating hyperplane in that space. It is often difficult and even im-

ossible to explicitly define an appropriate mapping function, but

e can solve this problem with kernel trick [44] . There are a vari-

ty of kernel functions available such as polynomial function, radial

asis function and sigmoid function, and users can define various

ernel functions as well. 

For probability estimation, SVM transforms the decision values

nto probability values using (14) , 

prob(x ) = 

1 

exp (A ̂

 y + B ) 
(14) 

here ˆ y is the decision value of x, A and B are estimated by min-

mizing the negative log likelihood of training set. Thus, SVM can

ake a probability estimate that the test instance derived from the

redicted label. 

.4. Evaluation measures 

To show the superiority of the proposed methods in selecting

iomarkers and their performance in classifying different tumor

ubtypes, we evaluate the proposed frameworks from two differ-

nt aspects: the selected biomarkers and corresponding classifica-

ion performance. 

In analyzing the selected biomarkers, we compare the number

f selected genes for subtype independent, subtype dependent, and

usion based methods. We also compare time costs in obtaining

he optimal gene subsets. We evaluate gene relationships and clas-

ification to show whether the proposed methods enable us to ob-

ain unique genes for a tumor subtype with a faster, better predic-

ive model. 

.4.1. Classification performance measures 

To evaluate the quality of a gene selector, classification perfor-

ance is a direct and effective criterion and is much more impor-

ant. A feature selector obtaining poor classification results is of

ittle use in tumor subtype identification. In the evaluation, a con-

usion matrix that contains the actual labels and predicted labels is

pplicable to measure the classification performance [45] . Table 2

resents a confusion matrix for tumor subtype classification in the

ase of three classes. Accordingly, we use accuracy, precision, re-

all, and F1 to show the classification performance, and the higher

heir values, the better the constructed classifier with the selected

eatures. 
Accuracy is the probability of correctly classifying each sample,

t equals the number of samples that are correctly grouped and

an be obtained with (15) . 

ccuracy = 

∑ C 
i =1 T P ii 
total 

= 

∑ C 
i =1 T P ii ∑ C 
i =1 N I i 

= 

∑ C 
i =1 T P ii ∑ C 
i =1 N T i 

(15) 

Precision represents the weighted average of the fraction of the

nferred labels that are correctly predicted for each tumor subtype.

or a classification problem with C classes, Precision can be calcu-

ated with (16) , 

recision = 

1 

C 

C ∑ 

i =1 

T P ii 
N I i 

(16) 

here TP ii is the number of test samples that are correctly clas-

ified for the inferred label i; NI i shows the total number of test

amples that are classified as label i , and equals the sum of the

umbers in corresponding row. 

 I i = T P ii + 

C ∑ 

j =1 , j � = i 
F P i j (17) 

Recall refers to the weighted average of the fraction of the true

abels that are correctly classified for each tumor subtype. For a

lassification problem with C classes, we can measure Recall using

18) . 

ecall = 

1 

C 

C ∑ 

i =1 

T P ii 
N T i 

(18) 

n which NT i indicates the number of test samples with true label

 , and can be obtained by totaling the numbers of corresponding

olumn. 

 T i = T P ii + 

C ∑ 

j =1 , j � = i 
F P ji (19) 

F1, calculated using formula (20) , provides a way to combine

recision and recall into a single metric, and is often used when

aking evaluations on imbalanced datasets. F1 takes a real number

etween 0 and 1, and 1 indicates that the classifier can correctly

lassify all test samples. 

1 = 

2 ∗ precision ∗ recall 

precision + recall 
(20) 

.5. Experimental setup 

In this study, we use Fisher score, mRMR, and FCBF, respec-

ively, as the foundation of the proposed subtype dependent and

ndependent gene selection frameworks. Each feature selector is

equired to obtain an optimal gene subset. Since FCBF is a feature

ubset selection method, we can directly use that output for se-

ected genes. For feature ranking methods, such as Fisher score and

RMR, to find the best feature subset, we investigate the p top-

anked features and further search the best ranked feature subsets.

pecifically, we first generate feature subsets by picking the top p

eatures sequentially. Then, we obtain p feature subsets and con-

truct classifiers on training set projected over each of the feature

ubsets. The classifier that achieves the best classification perfor-

ance corresponds to the best feature subset [34] . If two or more

eature subsets produce equal classification accuracy, the one with

mallest number of features is selected. As there are studies sug-

esting that only a few important genes are associated with a cer-

ain cancer and therefore sufficient for the diagnosis [8] . In this

tudy, we assess the proposed method with a few candidate genes,

nd consider p = 50. Also, we use the average classification accu-

acy, which is obtained by the leave-one-out cross validation cou-

led with SVM, to measure the quality of a feature subset [6] . 
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Table 3 

Number of selected genes for subtype-dependent and independent 

methods on Leukemia2. 

Methods classes Fisher mRMR FCBF 

Subtype Independent all 46 6 94 

Subtype 

Dependent 

class1 18 2 97 

class2 13 5 65 

class3 43 35 48 

AVE 24 14 70 

Fusion all 74 42 207 

Common 28 4 70 

Distinct 46 38 137 

Table 4 

Number of selected genes for subtype-dependent and independent 

methods on Brain2. 

Methods classes Fisher mRMR FCBF 

Subtype Independent all 40 5 113 

Subtype 

Dependent 

class1 18 10 41 

class2 7 10 44 

class3 5 26 43 

class4 4 18 40 

AVE 8 16 42 

Fusion all 33 64 167 

Common 10 2 33 

Distinct 23 62 134 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Number of selected genes for subtype-dependent and independent 

methods on Brain1. 

Methods classes Fisher mRMR FCBF 

Subtype Independent all 31 18 244 

Subtype 

Dependent 

class1 16 40 50 

class2 17 8 48 

class3 2 12 51 

class4 1 6 40 

class5 8 4 28 

AVE 8 14 43 

Fusion all 43 69 209 

Common 9 7 82 

Distinct 34 62 127 

Table 6 

Number of selected genes for subtype-dependent and independent 

methods on 9_Tumor. 

Methods classes Fisher mRMR FCBF 

Subtype Independent all 13 36 502 

Subtype 

Dependent 

class1 4 36 49 

class2 3 9 40 

class3 8 32 49 

class4 4 9 40 

class5 16 5 55 

class6 7 6 44 

class7 4 12 47 

class8 2 15 22 

class9 5 6 38 

AVE 5 14 42 

Fusion all 53 129 368 

Common 10 11 135 

Distinct 43 118 233 

Table 7 

Number of selected genes for subtype-dependent and independent 

methods on 11_Tumor. 

Methods classes Fisher mRMR FCBF 

Subtype Independent all 47 37 2008 

Subtype 

Dependent 

class1 27 2 112 

class2 6 30 69 

class3 14 13 120 

class4 41 26 146 

class5 4 5 87 

class6 8 8 94 

class7 1 2 74 

class8 1 1 92 

class9 1 1 56 

class10 48 6 64 

class11 22 6 86 

AVE 15 9 90 

Fusion all 173 100 965 

Common 9 3 459 

Distinct 164 97 506 
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To evaluate the quality of the terminally selected feature subset,

we use the stratified k -fold cross validation to evaluate the sub-

type independent method, subtype dependent method, and fusion

based method. In the k -fold cross validation scheme, the data is

divided with equal sizes, and one of the k folds is used as the test

set and the remaining ( k -1) folds are used as the training set for

the classifier construction. The final classification accuracy is the

average of the k results [6] . For each selected subset, a SVM clas-

sifier with linear kernel and default C parameter in LIBSVM [44] is

trained on the training set, and tested on corresponding test set.

Due to small number of instances of some tumor subtypes, we

use three-fold cross validation. Also, each feature selector is evalu-

ated under the same training and test sets. Additionally, to handle

the multi-class classification problem with SVM, “one-against-one”

strategy is used to label a test instance, that is, when classifying

an instance, it constructs all possible two-class classifiers and de-

termines its label with a simple majority rule. 

4. Experimental results and analysis 

4.1. Selection of discriminant genes 

In this section, we report the selected genes of each feature se-

lector from two aspects: the number of selected genes, and the

relations between genes selected with subtype dependent and in-

dependent methods. 

4.1.1. Number of selected genes 

For each of the baseline feature selectors, including Fisher score,

mRMR and FCBF, we record the number of selected features for

subtype independent method, subtype dependent method, and fu-

sion based method. Tables 3–8 present experimental results of the

six microarray datasets, respectively. The last three columns repre-

sent the three used baseline feature selectors, in which the column

“Fisher” is Fisher score for short. Of note, subtype independent

method selects a subset of genes for all tumor subtypes, thus it re-

turns a single gene subset. In contrast, subtype dependent method

finds a unique gene subset for each tumor subtype, so the number

of selected gene subsets equals the number of tumor subtypes. Fu-

sion based method returns a gene subset, which is a union of the
ubsets obtained using subtype dependent method, thus it returns

 gene subset for all tumor subtypes. Additionally, in each table,

he row “AVE” presents the average number of genes selected by

ubtype dependent method over all tumor subtypes. 

From Tables 1 and 3–8 , we can see that all the feature selec-

ion methods can significantly reduce the original feature dimen-

ionality, indicating that there exist a substantial number of irrele-

ant and redundant features in the gene expression profiles. Then,

e observe that for the three types of feature selection meth-

ds, using a different baseline feature selector leads to a differ-

nt gene subset. For example, on Leukemia2, when using Fisher

core, subtype independent method selects 46 genes in compari-

on to 6 genes and 96 genes obtained using mRMR and FCBF, re-

pectively. Also, subtype dependent method with FCBF selects 97,

5, and 48 genes for the three tumor subtypes, respectively, while
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Table 8 

Number of selected genes for subtype-dependent and independent 

methods on 14_Tumor. 

Methods classes Fisher mRMR FCBF 

Subtype Independent all 50 49 1109 

Subtype 

Dependent 

class1 30 13 114 

class2 3 8 19 

class3 1 34 18 

class4 23 15 15 

class5 50 28 38 

class6 45 17 20 

class7 13 7 18 

class8 25 13 18 

class9 10 42 20 

class10 40 15 18 

class11 8 32 18 

class12 23 49 20 

class13 4 20 27 

class14 40 35 64 

class15 4 1 18 

class16 26 32 20 

class17 1 1 16 

class18 11 34 23 

class19 2 31 21 

class20 5 31 23 

class21 1 32 15 

class22 2 5 18 

class23 7 4 24 

class24 21 49 21 

class25 1 8 10 

class26 3 14 31 

AVE 15 21 25 

Fusion all 386 540 642 

Common 9 10 201 

Distinct 377 530 441 
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Fig. 4. Relations between genes on Leukemia2 dataset. Class1, class2 and class3 

represent genes selected by subtype dependent method for each tumor subtype, 

and all represents genes selected by subtype independent method for all subtypes. 
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t selects 18, 13, and 43 genes using Fisher score. Accordingly, the

umber of selected genes for fusion based method also varies with

he used baseline feature selector. This is reasonable, since Fisher

core, mRMR, and FCBF use different metrics to evaluate the good-

ess of a candidate feature. 

We also observe that subtype dependent method selects gene

ubsets of different sizes for different subtypes. For instance, on

eukemia2 dataset, when using Fisher score, it selects 18 genes

or class 1, 13 genes for class 2, and 43 genes for class 3; in the

ase of mRMR, it obtains 2, 5, and 35 genes for three tumor sub-

ypes, respectively; and when using FCBF, the number of selected

enes are 97, 65, and 48 in turn. Similar results can be observed

n other datasets. This indicates that there probably exist differ-

nt gene subsets for different tumor subtypes, which is the main

eason that motivates us to conduct this study. 

In addition, we can see that the average number of se-

ected genes using subtype dependent method is generally smaller

han that of subtype independent method, and that fusion based

ethod always obtains a gene subset with a larger size. For ex-

mple, on Leukemia2 dataset, using Fisher score feature selector,

ubtype independent method selects 46 genes, subtype depen-

ent method selects 24 genes for each tumor subtype on aver-

ge, and fusion based method leads to a subset with 74 genes. On

he 14_Tumor dataset with 26 tumor subtypes, using FCBF, sub-

ype independent method selects 1109 genes, fusion based method

eturns 642 genes, while subtype dependent method selects 25

enes on average. From the results of column “AVE”, we see that

sing Fisher score or mRMR as the baseline feature selector shows

dvantages over FCBF in terms of the average number of genes se-

ected. It is worth noting that selecting a smaller subset of genes

elps biologists test the underlying biological mechanisms and

athways in cell based assays. 
.1.2. Relations between subtype-dependent and Subtype-independent 

iomarkers 

We initially investigated the difference between subtype depen-

ent and subtype independent method in the terminally selected

enes. As shown in Tables 3–8 , the row “Distinct” shows the num-

er of genes that are selected by subtype dependent method but

ot by subtype independent method, and the row “Common” indi-

ates the number of common genes selected by the two methods.

rom Tables 3–8 , we can observe that there does exist a differ-

nce between the genes selected by the two methods. The subtype

ndependent method tends to select a subset of those present in

ependent method. 

To investigate whether subtype dependent method can obtain

 gene subset that is specific to a tumor subtype and contains

ommon genes for all tumor subtypes, we look into the selected

enes and use Venn diagram to represent their relationship. Due

o the graphical representation power of Venn diagram, we show

hese kinds of relationships with an example of three tumor sub-

ypes and choose Leukemia2 and 14_Tumor for illustration. Anal-

sis on other datasets can be conducted in a similar way. Accord-

ngly, Fig. 4 presents the relations between the genes related to

he Leukemia2 tumor subtypes. From the left one, we can see that

ubtype dependent method obtains a unique gene subset for each

umor subtype, since the intersection between two of them is very

mall. From the right one, we can observe that about 33% (31/94)

enes selected by subtype independent method intersect with the

enes for class1 obtained by subtype dependent method, and that

3% (22/94) of the genes intersect with the genes for class2. This

ndicates that subtype independent method also has the capacity

o select a subset of genes that are related to each tumor sub-

ype. However, subtype independent method fails to locate the tu-

or subtype specific genes. Fig. 5 shows a similar diagram from

4_Tumor. Due to the large number of tumor subtypes, we ran-

omly choose class24, class25 and class26 as an illustration. Specif-

cally, we can see that subtype dependent method can obtain a

nique gene subset for each tumor subtype, because the intersec-

ion between two of them is empty. We can also observe that ten

enes selected by subtype independent method intersect with the

enes for class24 and that three genes intersect with the genes for

lass25. 

.2. Performance of tumor subtype classification 

Tables 9–14 show the experimental results regarding classifi-

ation performance for each of the experimental datasets, respec-

ively. A higher value indicates better quality of the selected genes

n tumor subtype classification in each of the four metrics used
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Fig. 5. Relations between genes on 14_Tumor dataset. Class24, class25 and class26 

represent genes selected by subtype dependent method for each tumor subtype, 

and all represents genes selected by subtype independent method for all subtypes. 

Table 9 

Performance of tumor subtype classification using different gene selection methods 

on Leukemia2. 

Methods Accu Prec Rec F1 

No feature selection 0.8889 0.8979 0.8901 0.8940 

Fisher Independent 0.9722 0.9718 0.9694 0.9706 

Dependent 0.9861 0.9885 0.9833 0.9859 

Fusion 0.9861 0.9885 0.9833 0.9859 

mRMR Independent 0.9583 0.9558 0.9528 0.9543 

Dependent 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

Fusion 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

FCBF Independent 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

Dependent 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

Fusion 0.9861 0.9885 0.9833 0.9859 

Table 10 

Performance of tumor subtype classification using different gene selection methods 

on Brain2. 

Methods Accu Prec Rec F1 

No feature selection 0.7576 0.7562 0.7536 0.7549 

Fisher Independent 0.7586 0.7825 0.7941 0.7882 

Dependent 0.8799 0.8964 0.8964 0.8964 

Fusion 0.8603 0.8798 0.8786 0.8792 

mRMR Independent 0.8578 0.8600 0.8405 0.8501 

Dependent 0.9596 0.9677 0.9464 0.9569 

Fusion 0.9596 0.9677 0.9464 0.9569 

FCBF Independent 0.9203 0.9335 0.9107 0.9220 

Dependent 0.9804 0.9844 0.9821 0.9833 

Fusion 0.8995 0.9196 0.8929 0.9061 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 

Performance of tumor subtype classification using different gene selection methods 

on Brain1. 

Methods Accu Prec Rec F1 

No feature selection 0.8877 0.7565 0.6900 0.7217 

Fisher Independent 0.8551 0.6941 0.7133 0.7036 

Dependent 0.8995 0.7255 0.7100 0.7176 

Fusion 0.8888 0.7928 0.7533 0.7725 

mRMR Independent 0.8988 0.8639 0.800 0.8307 

Dependent 0.9552 0.9875 0.8500 0.9136 

Fusion 0.9322 0.9021 0.8267 0.8628 

FCBF Independent 0.9437 0.9846 0.8167 0.8928 

Dependent 0.94 4 4 0.9693 0.8167 0.8865 

Fusion 0.9437 0.9846 0.8167 0.8928 

Table 12 

Performance of tumor subtype classification using different gene selection methods 

on 9_Tumor. 

Methods Accu Prec Rec F1 

No feature selection 0.5851 0.5369 0.5104 0.5233 

Fisher Independent 0.6310 0.5616 0.5840 0.5726 

Dependent 0.9165 0.9388 0.8838 0.9105 

Fusion 0.8121 0.8516 0.7908 0.8201 

mRMR Independent 0.8163 0.7490 0.7496 0.7493 

Dependent 0.9675 0.9778 0.9286 0.9525 

Fusion 0.7838 0.8402 0.7542 0.7949 

FCBF Independent 0.8005 0.7213 0.7264 0.7238 

Dependent 0.9666 0.9730 0.9722 0.9726 

Fusion 0.7687 0.7476 0.6894 0.7173 

Table 13 

Performance of tumor subtype classification using different gene selection methods 

on 11_Tumor. 

Methods Accu Prec Rec F1 

No feature selection 0.8969 0.9091 0.8390 0.8727 

Fisher Independent 0.7884 0.8036 0.7574 0.7799 

Dependent 0.9484 0.9502 0.9172 0.9334 

Fusion 0.9382 0.9422 0.9045 0.9230 

mRMR Independent 0.9317 0.9386 0.8918 0.9146 

Dependent 0.9721 0.9697 0.9551 0.9623 

Fusion 0.9498 0.9543 0.9156 0.9345 

FCBF Independent 0.9542 0.9469 0.9313 0.9390 

Dependent 0.9944 0.9899 0.9924 0.9912 

Fusion 0.9714 0.9674 0.9533 0.9603 

Table 14 

Performance of tumor subtype classification using different gene selection methods 

on 14_Tumor. 

Methods Accu Prec Rec F1 

No feature selection 0.6006 0.6353 0.5424 0.5852 

Fisher Independent 0.4381 0.4159 0.3618 0.3870 

Dependent 0.6755 0.7664 0.6448 0.7003 

Fusion 0.6726 0.6805 0.6400 0.6596 

mRMR Independent 0.5483 0.5301 0.5183 0.5241 

Dependent 0.7666 0.8079 0.7342 0.7693 

Fusion 0.7178 0.7926 0.6768 0.7301 

FCBF Independent 0.6465 0.7028 0.5947 0.6442 

Dependent 0.7011 0.7501 0.6560 0.6999 

Fusion 0.7015 0.7749 0.6643 0.7153 

1  

h  

d  

w  

F  

a  

a

in this study. The best values achieved by the three types of fea-

ture selection methods in terms of accuracy and F1 score are high-

lighted in bold. For comparison, the second row “No feature selec-

tion” presents the classification results without using feature selec-

tion. 

We observe in Tables 9–14 , that either mRMR or FCBF as

the baseline feature selector tends to obtain better classification

performance versus that baseline selector from the Fisher score.

For example, on Brain2 dataset, subtype dependent method with

Fisher score obtains an accuracy of 0.8799, which is less than

0.9596 of mRMR and 0.9804 of FCBF. This is largely because that

in contrast to mRMR and FCBF, the Fisher score is a single fea-

ture ranking method that evaluates the quality of candidate fea-

tures independently and does not consider the interaction between

features. This indicates that it is preferred to integrate an effective

feature selector into the two frameworks to get high-quality gene

subsets. Unexpectedly, subtype independent method fails to im-

prove the classification performance especially when working on

a dataset with a large number of classes such as 11_Tumor and
4_Tumor, whereas our proposed process has been shown to have

igher performance. For example, on 11_Tumor, subtype indepen-

ent method with Fisher score only obtains an accuracy of 0.7884,

hich is less than 0.8969 obtained without using feature selection.

or 14_Tumor, subtype independent method with mRMR obtains

n accuracy of 0.5483, in comparison with 0.6006 obtained using

ll the features. 
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(a) Leukemia2 (b) Brain2 (c) Brain1

(d) 9_Tumor (e) 11_Tumor (f) 14_Tumor

Fig. 6. Time cost comparisons between subtype-independent and subtype-dependent methods in obtaining the optimal gene subset. 
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We also observe that whichever baseline feature selector is

sed, subtype dependent method consistently obtains better clas-

ification performance than that of the subtype independent

ethod, but this is not the case for the fusion based method. For

xample, when using mRMR, fusion based method outperforms

ubtype independent method on Brain1 dataset in terms of accu-

acy (0.9322 vs. 0.8988) and F1 (0.8628 vs. 0.8307), but on 9_Tumor

ataset, fusion based method obtains an accuracy of 0.7838, which

s lower than 0.8163 of subtype independent method. 

Furthermore, we can see that subtype dependent method out-

erforms fusion based method in the majority of cases except that

he one using FCBF on 14_Tumor dataset. But, in this case, the dif-

erence between them is quite small as subtype dependent method

as an accuracy of 0.7011, which is only 0.0 0 04 smaller than that

f fusion based method. This demonstrates the overall superior-

ty of the proposed subtype dependent feature selection method

n achieving better classification performance. 

.3. Running time cost comparison 

In the previous section, we presented data that the proposed

ubtype dependent method has a better classification performance.

n this section, we investigate the three types of gene selection

ethods in terms of the time cost to obtain the optimal gene sub-

et and time cost in classification. All experiments are conducted

n a desktop with a Quad-core Intel Core i5 CPU (3.2 GHz proces-

or and 4G RAM). 

.3.1. Time cost in obtaining the optimal gene subset 

Due to the independence of the training set in selecting genes

hat are specific to tumor subtypes, subtype dependent method

an work in a parallel way. Thus, we present the time costs for

ach tumor subtype rather than show them as a whole to compare
he time costs. For a C -class gene selection problem, we obtain C

ime costs, each of which is associated with a tumor subtype. Since

he genes selected by fusion based method is the union of the gene

ubsets that are obtained with subtype dependent method, the

ime cost is then the maximum of C time costs, and we do not take

t into account. Fig. 6 presents the time cost comparison between

ubtype independent method and subtype dependent method on

he six microarray datasets. In each subfigure, “Independent” in-

icates subtype independent method, and “Dependent(1- N )” indi-

ates subtype dependent method. Specifically, the first bar in this

ategory represents the time cost associated with class1, and the

ast bar is for class N. N is the number of classes of a dataset. 

From Fig. 6 , we can observe that no matter which baseline

eature selector is adopted, subtype independent method is con-

istently much more time consuming than subtype dependent

ethod, which demonstrates the superiority of subtype dependent

ethod in reducing time costs. Particularly, the difference between

hem in time cost increases with the number of classes, and the

ime cost in selecting the subtype specific genes is very small. For

xample, on Leukemia2, it takes subtype independent method with

isher score 2.31 seconds, and correspondingly it takes subtype de-

endent method 1.51, 1.53 and 1.72 seconds for each of the tumor

ubtypes, respectively. On 14_Tumor, however, with the same pa-

ameter setting as that of Leukemia2 dataset, it takes subtype inde-

endent method 151.33 seconds, but the maximum execution time

f subtype dependent method is 29.28 seconds. The main reason to

he above observations is that subtype independent method finds

he optimal gene subset on a multi-class dataset, it involves more

omputations in evaluating the quality of candidate features. Also,

or subtype dependent method, the training set size is the same for

ll the tumor subtypes, so the time costs do not vary much within

ependent methods regardless of N . 
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(a) Leukemia2 (b) Brain2 (c) Brain1

(d) 9_Tumor (e) 11_Tumor (f) 14_Tumor

Fig. 7. Time cost comparisons of subtype-independent, subtype-dependent, and fusion based gene selection methods in performing tumor subtype classification. 
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4.3.2. Time cost in tumor subtype classification 

In this subsection, we present the time costs of the three types

of methods in tumor subtype classification. Because subtype de-

pendent method can work in parallel, we present the time costs

associated with each tumor subtype. For a C -class classification

problem, we obtain C time costs, each of which is related to a

two-class classification problem. Besides, we present the time costs

of fusion based method. Fig. 7 presents the time cost compar-

ison on the experimental datasets. In each subfigure, “Indepen-

dent” indicates subtype independent method, “Fusion” means fu-

sion based method, and “Dependent(1- N )” indicates subtype de-

pendent method. The first bar in this category represents the time

cost associated with class1, and the last bar represents the time

cost for class N . 

From Fig. 7 , we can see that the time costs of three types

of methods vary with the baseline feature selectors. When using

Fisher score or mRMR, the time costs taken by subtype indepen-

dent method are comparable to that of subtype dependent method.

But if using FCBF, in dealing with datasets with a large number

of classes, such as 9_Tumor, 11_Tumor, and 14_Tumor, subtype de-

pendent method greatly benefits from the proposed scheme and

is much more efficient than subtype independent method. In ad-

dition, we can observe that whichever baseline feature selector is

used, the fusion based method generally has a higher time cost

than subtype dependent method. Also, the difference in time costs

between subtype dependent method and fusion based method in-

creases with the number of classes. These results and analysis

demonstrate the efficiency of the subtype dependent method. 

4.4. Exploration of other classifiers 

As we discussed in previous sections, the two proposed feature

selection frameworks, including subtype dependent feature selec-

tion and fusion based feature selection, are not designed for a

specific classifier and any classifier can be integrated into them.
urthermore, in addition to SVM, we preliminarily investigate two

ther commonly used classification models, Naïve bayes (NB) and

 -nearest-neighbor (KNN), and compare their performance to that

f SVM. 

Both NB and KNN basically take a similar procedure as SVM in

electing subtype-dependent features and in training a classifica-

ion model, while they take a slightly different way to deal with

oting conflict in classifying test samples. In the case of SVM, we

se formula (14) to estimate the confidence that a test sample be-

ongs to a certain class. 

For NB, it outputs the posteriori probability for determining the

abel l of an unseen sample x using formula (21) . Accordingly, we

an directly use the posteriori probability to estimate the confi-

ence for solving voting conflict. 

p(l| x ) = 

p(l) p(x | l) ∑ 

i 

p( l i ) p(x | l i ) (21)

For KNN, it calculates the distance between a test sample and

very training sample to assign test samples labels. To measure the

ssignment confidence of a test sample x , we adopt the following

teps to get a posteriori probability. For x and a training set Tr ,

et k be the number of nearest neighbors used in KNN, nbhd ( Tr,

 ) be the k nearest neighbors to x in Tr, Y ( nbhd ) be the labels of

he points in nbhd ( Tr, x ), prior be the priors of the classes in Tr,

 ( nbhd ) be the weights of the points in nbhd ( Tr, x ) and being nor-

alized to sum to the priors, we calculate the posteriori probabil-

ty p ( l | x ) that x is assigned to class l using formula (22) . 

p(l| x ) = 

∑ 

i ∈ nbhd(x ) 

W (i ) I { Y ( i ) = l } 
∑ 

i ∈ nbhd(x ) 

W (i ) 
(22)

n which I{ a = b } is an indicator function and equals 1 if a equals

 . Afterwards, we use the posteriori probability to estimate the
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Table 15 

Performance of tumor subtype classification using different classifiers and gene selection methods on Leukemia2. 

Metrics Accu Prec Rec F1 

Methods SVM NB KNN SVM NB KNN SVM NB KNN SVM NB KNN 

No feature selection 0.9728 0.9728 0.8627 0.9714 0.9055 0.8627 0.9714 0.9714 0.8615 0.9714 0.9714 0.8636 

Fisher Independent 0.9722 0.7347 0.7230 0.9718 0.9697 0.7178 0.9694 0.7087 0.7139 0.9706 0.7138 0.7158 

Dependent 1.0 0 0 0 0.9021 0.7648 1.0 0 0 0 0.8595 0.8363 1.0 0 0 0 0.8937 0.7306 1.0 0 0 0 0.8995 0.7799 

Fusion 1.0 0 0 0 0.8610 0.8604 1.0 0 0 0 0.7189 0.8555 1.0 0 0 0 0.8559 0.8552 1.0 0 0 0 0.8577 0.8554 

mRMR Independent 0.9461 0.8220 0.7103 0.9394 0.9841 0.6927 0.9417 0.8123 0.6905 0.9405 0.8196 0.6916 

Dependent 1.0 0 0 0 0.9733 0.8488 1.0 0 0 0 0.94 4 4 0.8667 1.0 0 0 0 0.9762 0.8290 1.0 0 0 0 0.9729 0.8474 

Fusion 1.0 0 0 0 0.9450 0.8615 1.0 0 0 0 0.8270 0.8671 1.0 0 0 0 0.9524 0.8587 1.0 0 0 0 0.9484 0.8629 

FCBF Independent 1.0 0 0 0 0.9728 0.9867 1.0 0 0 0 0.9055 0.9841 1.0 0 0 0 0.9714 0.9861 1.0 0 0 0 0.9714 0.9851 

Dependent 1.0 0 0 0 0.9867 0.9855 1.0 0 0 0 0.9841 0.9885 1.0 0 0 0 0.9881 0.9833 1.0 0 0 0 0.9861 0.9859 

Fusion 1.0 0 0 0 0.9867 1.0 0 0 0 1.0 0 0 0 0.9714 1.0 0 0 0 1.0 0 0 0 0.9881 1.0 0 0 0 1.0 0 0 0 0.9861 1.0 0 0 0 

Table 16 

Performance of tumor subtype classification using different classifiers and gene selection methods on Brain2. 

Metrics Accu Prec Rec F1 

Methods SVM NB KNN SVM NB KNN SVM NB KNN SVM NB KNN 

No feature selection 0.8186 0.7194 0.6177 0.8559 0.8067 0.6677 0.7869 0.6464 0.5940 0.8199 0.7177 0.6287 

Fisher Independent 0.7390 0.6422 0.5772 0.7579 0.6292 0.5613 0.7357 0.6298 0.5619 0.7466 0.6295 0.5616 

Dependent 0.9387 0.8003 0.6985 0.9488 0.8039 0.7373 0.9488 0.8095 0.6714 0.9488 0.8067 0.7028 

Fusion 0.9583 0.8003 0.8603 0.9706 0.7942 0.8983 0.9643 0.7905 0.8631 0.9674 0.7923 0.8804 

mRMR Independent 0.8419 0.6422 0.5233 0.8837 0.5994 0.4873 0.7691 0.5952 0.4917 0.8224 0.5973 0.4895 

Dependent 1.0 0 0 0 0.8787 0.5625 1.0 0 0 0 0.8803 0.6250 1.0 0 0 0 0.8964 0.5107 1.0 0 0 0 0.8883 0.5621 

Fusion 0.9608 0.8787 0.8186 0.9677 0.8774 0.8452 0.9464 0.8774 0.8262 0.9569 0.8774 0.8356 

FCBF Independent 0.9596 0.8591 0.8799 0.9665 0.8841 0.9041 0.9643 0.8417 0.8774 0.9654 0.8624 0.8905 

Dependent 0.9596 0.8419 0.8407 0.9655 0.8625 0.8938 0.9655 0.8048 0.8286 0.9655 0.8326 0.8599 

Fusion 0.9400 0.8419 0.6765 0.9514 0.8502 0.7903 0.9464 0.8048 0.6476 0.9489 0.8269 0.7119 

Table 17 

Performance of tumor subtype classification using different classifiers and gene selection methods on 11_Tumor. 

Metrics Accu Prec Rec F1 

Methods SVM NB KNN SVM NB KNN SVM NB KNN SVM NB KNN 

No feature selection 0.8736 0.8674 0.7417 0.8917 0.8751 0.7349 0.8127 0.8168 0.6630 0.8504 0.8449 0.6971 

Fisher Independent 0.7994 0.3107 0.2242 0.7941 0.1449 0.1494 0.7679 0.1911 0.1502 0.7808 0.1648 0.1498 

Dependent 0.9309 0.9025 0.6839 0.9510 0.8872 0.7995 0.8910 0.8965 0.6439 0.9200 0.8918 0.7133 

Fusion 0.9428 0.8506 0.8677 0.9583 0.8320 0.8517 0.9186 0.8272 0.8483 0.9380 0.8296 0.8500 

mRMR Independent 0.8968 0.3327 0.2248 0.8880 0.1833 0.1757 0.8547 0.2291 0.1763 0.8710 0.2036 0.1760 

Dependent 0.9598 0.9081 0.6835 0.9654 0.9079 0.8025 0.9270 0.8935 0.6242 0.9458 0.9007 0.7022 

Fusion 0.9600 0.8735 0.8564 0.9660 0.8620 0.8462 0.9452 0.8542 0.8281 0.9555 0.8581 0.8370 

FCBF Independent 0.9544 0.9023 0.8909 0.9463 0.9247 0.9061 0.9272 0.8195 0.8738 0.9367 0.8689 0.8896 

Dependent 0.9942 0.9540 0.8905 0.9899 0.9709 0.9497 0.9924 0.9275 0.8690 0.9912 0.9487 0.9076 

Fusion 0.9715 0.9252 0.9199 0.9628 0.9402 0.9043 0.9582 0.8983 0.9021 0.9605 0.9188 0.9032 
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f  
onfidence that x belongs to a certain class and use one-nearest-

eighbor (1NN) in this study. 

To evaluate the performance of NB and 1NN, we conducted ex-

eriments on three representative datasets with the same experi-

ental setup as we adopted above. Tables 15–17 show the experi-

ental results regarding classification performance for Leukemia2,

rain2, and 11_Tumor, respectively. A higher value indicates bet-

er quality of the selected genes in tumor subtype classification in

erms of each of the four metrics used in this study. The best val-

es achieved by the three types of feature selection methods and

hree classification models in terms of accuracy and F1 are high-

ighted in bold. For comparison, the third row “No feature selec-

ion” presents the classification results without using feature se-

ection. We can observe the following results. (1) In comparison

o subtype independent methods, subtype dependent biomarker

dentification helps obtain higher classification performance what-

ver SVM, NB, or KNN is used, which demonstrates the effective-

ess of the two proposed frameworks. For example, for 11_Tumor

ataset in the case of using fisher score, NB only achieves 0.1648

1 in subtype independent case, while subtype dependent method

c  
ncreases it to 0.8918 and fusion based method an F1 of 0.8296.

or KNN, subtype dependent method and fusion based method in-

rease the 0.1498 F1 of subtype independent method to 0.7133 and

.8500, respectively. (2) In comparison with NB and KNN, integrat-

ng SVM into the framework is a better choice towards better tu-

or classification performance. For example, for 11_Tumor dataset

n the case of fisher score with the framework of subtype depen-

ent method, SVM obtains an F1 of 0.9380, which outperforms

oth NB with an F1 of 0.8296 and KNN with an F1 of 0.8500;

ith the framework of fusion based method, SVM obtains an F1 of

.8710, while NB has an F1 of 0.2036 and KNN has an F1 of 0.1760.

his indicates the superiority of SVM over NB and KNN in clas-

ifying gene expression profiles of high-dimensionality and small

ample sizes. 

. Conclusion 

Tumor progression is a social and economic problem that af-

ects the life quality of a large number of individuals, thus ac-

urately distinguishing tumor subtypes contributes to the bet-
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ter management, treatment, and outcomes. Microarray technology

provides us a way to identify disease genes and classify tumor sub-

types, but the intrinsic nature of microarray data characterized by

high dimensionality and small sample sizes limits their capacity.

Correspondingly, researchers have put forward a wealth of feature

selection methods. However, most of them seek to find a common

subset of genes for all tumor subtypes within a pathological de-

rived context that may be unable to reflect the unique gene pro-

files of each molecular subtype specific for personalized targeting.

Therefore, in this study, we first propose a framework, called sub-

type dependent method that selects gene subsets for each tumor

subtype, combined with another framework, named fusion based

method that merges the outputs of subtype dependent method

into a single gene subset. In addition, we give a corresponding clas-

sification model, including classifier training and testing schemes.

We then detailed how to obtain the optimal feature subset for

ranking based as well as subset based feature selection methods

in this study, and detailed how to estimate the confidence that a

sample belongs to a specific class to solve the problem of voting

conflict. 

To evaluate the performance of the two proposed methods in

gene selection and tumor subtype classification, under each of the

two proposed frameworks, we implement three specific gene se-

lection algorithms with Fisher score, mRMR, and FCBF as the build-

ing blocks, respectively, and use three different classification mod-

els with different metrics (support vector machine, Naïve bayes,

and k -nearest-neighbor) as the learning algorithm in feature se-

lection and classifier construction. Finally, we conducted extensive

experiments on six publicly available microarray datasets in terms

of the number of selected genes, classification performance, and

the time costs in gene selection and tumor subtype classification.

Experimental results show that in comparison with subtype inde-

pendent method, our subtype dependent method selects a subset

of genes with a smaller size that is specific for each tumor sub-

type. Besides, compared with NB and KNN, integrating SVM into

the framework is a better choice towards better tumor classifica-

tion performance. This helps design personalized treatment plans,

also accelerates drug discovery and aids drug design. Furthermore,

the subtype dependent method outperforms the subtype indepen-

dent and fusion based methods in terms of accuracy, precision,

recall, and F1 score, particularly for the microarray dataset with

a large number of categories, such as 14_Tumor with 26 classes.

Also, the experimental results show that a powerful baseline fea-

ture selector is preferred to be used in the proposed frameworks.

Additionally, time cost comparisons demonstrate the efficiency of

subtype dependent method in gene selection as well as subtype

identification. 

In the future, we plan to follow up with three lines of questions.

First, although we tested the effectiveness of the proposed method

in classifying tumor subtypes, it is actually a general framework

that can be applied to other situations such as protein structure

and function prediction. Second, we will explore other feature se-

lectors and classification models as the building blocks of the pro-

posed frameworks and analyze corresponding results. Third, in re-

cent years, deep learning models have gained great popularity due

to their powerful feature representation ability and they have been

successfully applied in a variety of fields such as drug-drug interac-

tion identification [46] , protein-protein interaction detection [47] ,

and protein structure prediction [48] . Though working well, meth-

ods built on deep learning models generally suffer from the diffi-

culty of interpretation of features. Consequently, it is often difficult

for researchers to understand the obtained features, which greatly

limits their further use in identifying drug targets and locating dis-

ease genes. In contrast, the two proposed methods provide a way

of alleviating this problem, and exploring their power remains an-

other research topic. 
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