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A B S T R A C T

Gene selection seeks to find a small subset of discriminant genes from the gene expression profiles. Current gene
selection methods such as wrapper-based models mainly address the issue of obtaining high-quality gene
subsets. However, they are considerably time consuming, due to the existence of irrelevant and redundant
genes. In this study, we present an improved wrapper-based gene selection method by introducing the Markov
blanket technique to reduce the required wrapper evaluation time. In addition, our method can identify
targeting genes while eliminating redundant ones in an efficient way. We use ten publicly available microarray
datasets to evaluate the proposed method. The results show that our method can handle gene selection
effectively. Our experimental results also show that wrapper-based method combined with the Markov blanket
outperforms other competing methods in terms of classification accuracy and time/space complexity.

1. Introduction

The rapid development and maturing of microarray technology
enables researchers to measure the expression profiles of thousands of
genes in a single experiment simultaneously [1], and the analysis of
microarray data is a good alternative to the diagnosis of cancers and the
discovery of disease biomarkers at the molecular level [2,3].
Accordingly, various statistical analysis methods and machine learning
models have been utilized to analyze gene expression profiles, whereas
the intrinsic nature of microarray data that are characterized by small
sample sizes and high dimensionality largely hinders their meaningful
applications in practice [4,5]. For example, in the diagnosis of cancer
with microarray data, since the number of genes typically exceeds the
number of available samples, classifiers that are directly constructed on
such data may suffer from poor generalization capacity and weak
robustness [6]. In addition, there are relevant studies suggesting that
only a few discriminant genes are associated with a certain cancer but
predictive for cancer diagnosis [7], and that the original gene space
consists of a wealth of noisy and redundant genes, which deteriorates
the performance of a classification model. Naïve Bayes, for example, is
sensitive to redundant features, and nearest neighbor-based learners
are susceptible to irrelevant features in handling classification pro-
blems [8]. One feasible way to mitigate this problem is to select a small

subset of discriminant genes from original gene space using an effective
gene selection method [9,10].

Feature selection, also known as gene selection in the context of
microarray data, plays an important role in the analysis of gene
expression profiles, ranging from cancer diagnosis and gene clustering
to tumor subtype classification and disease gene discovery [5]. Feature
selection is a process of finding a small subset of informative features
that are relevant to a specific task by discarding irrelevant and
redundant features [11]. Besides reducing the high dimensionality,
feature selection offers a multitude of benefits, including reducing time
costs in classifier training, enhancing the generalization capacity of the
constructed classifier, and helping biologists understand the underlying
biological mechanisms and biologically validate the drug targets
efficiently [12,13]. According to the framework proposed by Dash
and Liu [14], feature selection methods typically consists of two
components: a feature subset generator module and an evaluator
module. The former exploits a given search strategy to generate
candidate feature subsets, while the latter evaluates the quality of a
feature or a subset of features and feeds the evaluation information to
the feature subset generator to guide the next-round search of
candidate feature subset. In feature selection, establishing powerful
evaluation criteria for measuring the goodness of a feature subset
largely determines the quality of finally selected features. Depending on
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whether a classifier is used as the evaluation function, we can group
existing feature selection methods into three categories: filter methods,
wrapper methods, and embedded methods [15]. Filter methods are
independent of a classification model and measure the quality of a
feature subset using only the intrinsic properties of training samples, so
they are flexible in combination with various classifiers and have lower
computational complexity. Further, commonly used filter metrics
include distance-, dependency-, consistency-, and information theory-
based metrics [14,16,17]. Compared with other three metrics, feature
selection methods with information theory have drawn much more
attention because of their effectiveness and efficiency, and the capacity
in reflecting the non-linear relationships among variables and captur-
ing high order statistics of data. Correspondingly, researchers have
proposed and developed a number of feature selectors on the basis of
mutual information, such as symmetric uncertainty (SU), fast correla-
tion based filter (FCBF), mutual information feature selection (MIFS),
conditional mutual information maximum (CMIM), minimum redun-
dancy maximum relevance (mRMR), and joint mutual information
(JMI) [17]. In contrast to filter methods, wrapper methods use a
specific classifier to evaluate the quality of a feature, and often use the
classification accuracy or error rate as an evaluation criterion [18,19].
Because wrapper methods search for a feature subset that is best suited
to a classifier, they generally obtain better classification performance
but at the cost of high time complexity [19]. Embedded methods are
special cases of wrapper methods, and feature subsets are obtained
when they are used to construct the classifier. This makes them usually
more tractable than wrapper methods [20], and there are many
embedded methods available and many of them support multiple class
problems, such as random forest feature selection, multi-task lasso
[21].

Though wrapper methods generally achieve better classification
accuracy than filter methods, a major disadvantage is that they are
considerably time-consuming. For a dataset with N features, wrapper
methods approximately evaluate the quality of O(N2) feature subsets
when using the sequential selection scheme [8], and even incremental
wrapper methods handle a linear or sub-quadratic number of candi-
date feature subsets [22,23]. Such a large number of wrapper evalua-
tions would require a large amount of CPU time when they work on
high-dimensional microarray data. To this end, we present a novel
model that combines wrapper-based feature selection with the Markov
blanket technique. Markov blanket is a cross-entropy based technique
that considers the relevance between features, and is capable of
explicitly identifying and removing redundant genes. Given the
Markov blanket, the eliminated features are conditionally independent
of the target class [24], then they have no relevance to the target class,
thus can be removed safely. This enables us to identify redundant
features in a filter way rather than in a wrapper way and further reduce
the number of wrapper evaluations, which leads to better time
performance. In addition, it obtains better classification accuracy
compared with other methods without introducing Markov blanket,
as shown in our preliminary experimental results [25]. The main
contributions of this study are as follows. (1) We propose to combine
wrapper-based gene selection with the Markov blanket technique to
accelerate the feature selection process without degrading the classifi-
cation performance. Two types of specific feature selectors are im-
plemented based on our approach in this paper. (2) We conducted
extensive experiments to verify the effectiveness and efficiency of the
proposed methods on ten benchmark microarray datasets with three
popular classifiers. The results show our approach outperforms other
competing methods. (3) We analyze the theoretical space and time
complexity of the proposed approach, and find it is superior in practice.
(4) By conducting the feature subset consistency analysis, we find that
the resulting set of cancer-predictive genes is not unique. It indicates
that there probably exist different subsets of genes in achieving similar
or equal predictive classification performance in cancer diagnosis,
which facilitates the comprehensive study of disease specific genes.

The rest of this paper is organized as follows. Section 2 briefly
illustrates the wrapper-based feature selection methods, symmetric
uncertainty, as well as the relevance criteria for feature inclusion. In
Section 3, we first introduce several definitions and the Markov
blanket, and then detail the proposed feature selection methods.
Experimental setting and results are illustrated in Section 4, and
Section 5 analyzes the theoretical space and time complexity. Finally,
we conclude it with a brief summary.

2. Wrapper-based feature selection

2.1. Wrapper-based feature selection with sequential forward
selection

Because wrapper methods use a classifier to measure the quality of
a feature subset, they generally obtain low classification error rates due
to the specific interaction between the classifier and training set.
Obviously, enumerating all combinations of features and evaluating
their qualities in turn guarantee obtaining the globally optimal one, but
at the cost of high computational complexity that grows exponentially
with the number of features [18]. In practice, such high time complex-
ity is often unacceptable, particularly for the gene expression profiles
with high dimensionality. To accelerate this process, researchers have
proposed various search strategies to generate candidates. In feature
selection, commonly used search schemes include, but not limited to,
sequential forward selection (SFS), sequential backward selection
(SBS), sequential floating search, bidirectional search, random search,
and heuristic search [18]. Among these search strategies, SFS achieves
a better tradeoff between the quality of the obtained feature subset and
the computational complexity. Specifically, initializing the selected
feature subset to be empty, SFS selects the first feature that is most
relevant to the target class, and then searches for the next candidate
feature that most reduces the classification error rate. Continue with
the procedure until there is no candidate feature left or no further
improvement in classification performance. If k features are finally
selected from the total N features, wrapper methods with SFS
approximately evaluate O(kN) candidate feature subsets. Algorithm 1
presents corresponding pseudo-code. The evaluate() subroutine (Line
7) is the evaluation process for measuring the quality of a candidate
gene. The criteria used to select a candidate feature and the notations
used in Algorithm 1 are given in subSection 2.2.

2.2. Relevance criteria

In wrapper-based feature selection, the criterion to add a candidate
feature f into the selected feature set S is to conduct an inner five-fold
cross-validation on training setData projected over {S, f} and class label C
of Data. We use the symbol “↓” to represent the projection over a dataset.
For example, Data S↓ indicates that we obtain a new dataset that consists of
|S| column vectors (selected according to S) from Data, i.e., the new
dataset is a slice of Data. Rather than use the average accuracy of the five-
fold cross validation and do a t-test over the cross-validation results
[22,29], we adopt the following criteria: (1) a five-fold cross-validation is
used on Data; (2) the new feature f is selected only if the average accuracy
of the five-fold cross-validation over Data {S f C}↓ ∪ ∪ is higher than that of the
five-fold cross-validation on Data {S C}↓ ∪ , and at least MinFoldersBetter
(mf) out of the five accuracies over Data {S f C}↓ ∪ ∪ is not lower than the
average accuracy over Data S↓ ∪. Such a strategy avoids the criticism for the
use of a statistical test on a dataset of small size. Notably, mf is a user-
specified threshold. For the better control of low-confidence and over-
fitting issues, recommended empirical values for mf are 2 or 3 [8]. The
quality of a candidate feature is measured by evaluate(classifier,
Data S C}↓{ ∪new ), which returns two items: the average accuracy accnew of
the five-fold cross-validation and the number num representing how
many times the five accuracies obtained from the five-fold cross-validation
over Data {S f C}↓ ∪ ∪ are better than average accuracy over Data {S C}↓ ∪ .
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Algorithm 1. Wrapper-based Sequential Forward Selection (SFS).

2.3. Incremental wrapper-based subset selection framework

To utilize the advantages of wrapper and filter methods, researchers
have proposed to combine them together to achieve a tradeoff between the
computational complexity and classification performance [22,23]. Among
the various hybrid methods, incremental wrapper subset selection (IWSS)
method not only reduces the times of running wrapper evaluations, but
also achieves high-quality feature subsets when compared with other
state-of-the-art feature selectors [22]. The main idea of IWSS is to use the
ranked features, which is obtained by a filter method, to guide the
wrapper methods. Algorithm 2 presents the framework of IWSS, which
mainly consists of two parts: (1) a filter step that ranks the original
features in a descending order using a filter method (lines 1–2); (2) a
wrapper step that evaluates the ranked features sequentially (lines 3–8)
[23]. Essentially, the fitness() subroutine is used to evaluate the quality of
a candidate gene f, and it returns one term select_flag (a Boolean
variable) that indicates whether f is of good quality. We add f to the
currently selected feature subset S, if select_flag equals one.

Algorithm 2. Incremental wrapper-based subset selection
framework.

2.4. Symmetric uncertainty based feature ranking

According to the framework of IWSS, the first step of IWSS is to
rank the original features using a filter method. There are a variety of

filter methods available, whereas information theoretic criteria based
feature selectors have attracted researchers from many areas and been
successfully applied in many fields due to their effectiveness in
reflecting the non-linear relationship among variables [17]. In terms
of information theory, mutual information is widely used to measure
how much the distribution of a predictive variable and the response
variable differs from the statistical independence through their non-
linear correlation estimation [26]. The more relevant variable shares
more information with the target class, which provides us a criterion to
rank the predictive variables [17,26]. Due to the fact that the mutual
information-based feature ranking method favors a variable with more
values, Symmetric Uncertainty (SU), i.e. the normalized mutual
information, is commonly utilized [27]. SU measures the relevance
between two variables f and C using the following formula [28]:

SU f C MI f C
H C H f

H C H C f
H C H f

( , )= 2* ( , )
( ) + ( )

= 2*( ( ) − ( | ))
( ) + ( ) (1)

where H(f) represents the entropy of f, MI(f, C) is the mutual
information between f and C, and H(C|f) measures the conditional
entropy quantifying the remaining uncertainty of C given the knowl-
edge of f. Symmetric uncertainty normalizes the value of MI(f, C) to the
range [0,1]. A value 0 of SU(f, C) indicates that f and C are completely
independent, and a value 1 means that the knowledge of one variable
can predict the value of the other. Also, the greater SU(f, C) is, the more
relevant f to C. When embedded into the IWSS framework, SU ranks
the original features in a descending order. IWSS then works over the
ranked features sequentially to evaluate the quality of these features.
Algorithm 3 outlines the pseudo-code of IWSS using SU, where lines
1–4 correspond to the filter step, lines 5–12 illustrate the wrapper step,
and lines 9–10 are the metrics for feature inclusion or exclusion.
Specifically, Algorithm 3 is a special case of Algorithm 2. In Algorithm
3, we use the symmetric uncertainty metric (a filter method) to rank the
genes, and use the evaluate() subroutine (illustrated in Algorithm 1
and Section 2.2 relevance criteria) as the fitness() function to evaluate
the quality of a candidate gene.

Algorithm 3. Incremental Wrapper-based Subset Selection (IWSS).

3. Wrapper-based gene selection with Markov blanket

For wrapper-based feature selection with sequential forward search
and incremental selection, they both adopt a greedy forward selection
scheme to select candidate features and evaluate the goodness of a
candidate feature using a classifier. Though wrapper-based feature
selection methods achieve satisfactory classification performance in
actual use compared with other well performing feature selectors [22],
they are considerably time-consuming [8]. One obvious characteristic
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of such methods is that they evaluate each feature using a classifier,
even if a candidate feature is redundant to the already selected features.
Such a situation could cause wrapper-based feature selection methods
a large number of wrapper evaluations and contribute to high time
complexity. Assume that a feature f in the candidate feature subset CS
is redundant to the selected features S. In wrapper-based feature
selection with sequential forward selection (SFS), f is evaluated by the
classifier during each iteration and remains in CS until the end of the
feature selection. For IWSS, if a low-ranked feature f is redundant to S,
f remains in the CS until it is evaluated by the classifier. Obviously,
wrapper-based SFS and IWSS can identify redundant features using
the classification accuracy, whereas neither of them considers elim-
inating the redundant features from the candidate feature subset. To
alleviate this problem, we propose to integrate the Markov blanket
technique into wrapper methods to reduce the times of running
wrapper evaluations that are mostly carried out on the redundant
features. Specifically, each time when a new feature f is selected into S,
the remaining candidate features, whose Markov blanket is f, are to be
eliminated from CS, and they are not evaluated by the classifier.
Because the eliminated candidate features are conditionally indepen-
dent of the target class given their Markov blanket, they can be
removed safely. Therefore, the proposed approach is expected to
improve the feature selection.

3.1. Markov blanket

We first introduce the following notation to help illustrate the
proposed approach: Data is the samples with n features and m
instances and one target variable C; F ={F1, F2,…, Fn} is the feature
space of Data and R ={R1, R2,…, Rn} is a ranking of features in F; S
={S1, S2,…, Ss} (1 s n≤ ≤ ) is the currently selected features; Fi, Ri, Si are
the ith feature in F, R and S, respectively.

Definition 1. (Markov blanket). Given a feature F F∈i ,
letM F F M⊂ ( ∉ )i i i , Mi is a said to be a Markov blanket of Fi if Fi is
conditionally independent of {F M F− −i i , C} given Mi, i.e.,

P F M F C F M P F M F C M( − − , ) , ) = ( − − , ) )i i i i i i i (2)

Definition 2. (Redundant Feature). Let S be a set of features, a
feature f in S is redundant if and only if it has a Markov blanket within
S.

In feature selection, if Fi has a Markov blanket Mi within S, it
suggests that Fi contributes no more information beyond Mi to the
target class, therefore, Fi can be removed safely [24]. Because of the
high computational complexity in measuring the conditional indepen-
dence of features, Yu and Liu proposed to approximate the Markov
blanket of Fi using only one feature [27]. Next, we give the definitions of
the relevance and redundancy between two variables on the basis of the
symmetric uncertainty.

Definition 3. (C-Relevance). Given a predictive feature Fi and the
target class C, the relevance between them is referred to as C-
Relevance, noted by SU(Fi, C).

Definition 4. (F-Relevance). The correlation between two predictive
features Fi and Fj (i j≠ ) is referred to as F-Relevance, and written as
SU(Fi, Fj).

According to the previous discussions, feature selection is actually a
process of identifying features with high C-Relevance and eliminating
F-Relevance features. A feature with a larger C-Relevance contains
more information about the target class than a feature with a smaller C-
Relevance. To determine the existence of Markov blanket, we can use

SU F F SU F C( , ) > ( , )i j j to test whether Fj contributes to extra informa-
tion about the class beyond the information from Fi in the case when Fi
has a larger C-Relevance than that of Fj. An approximate Markov
blanket is defined below.

Definition 5. (Approximate Markov blanket). Given two predictive
features Fi and Fj and the target variable C, if SU F SU F C( ,C)≥ ( , )i j and
SU F F SU F C( , ) > ( , )i j j is satisfied, then Fj is redundant to Fi. Fi is said
to be an Approximate Markov blanket of Fj.

3.2. Wrapper-based sequential forward selection with Markov
blanket

In the above section, we have seen that Markov blanket has the
capacity to decide whether a candidate feature is redundant to the
selected features. Considering this, we propose to integrate Markov
blanket with wrapper-based sequential forward selection method (SFS-
MB). SFS-MB also adopts the greedy forward selection scheme for
feature selection, as shown in Algorithm 4. Specifically, SFS-MB first
selects the feature from the candidate features that is most relevant to
the target class (lines 5–11). Once a feature is selected, SFS-MB adds it
to the selected subset S and deletes it from F (lines 13–14). In contrast
to the wrapper-based SFS in Algorithm 1, SFS-MB further conducts the
redundant feature elimination step, which removes the features, whose
Markov blanket is the newly selected one, from the candidate features
(lines 15–19). SFS-MB then searches for the next candidate feature
that contributes most to the reduction of classification error rate and
eliminates features that are redundant to the newly selected one.
Repeat the above process until the candidate feature set is empty (line
3) or there is no improvement in classification accuracy (line 21).
Because SFS-MB reduces the number of candidate features to be
evaluated, it can gain better time performance in comparison with SFS
if there exists any conditional independence among the features.
Specifically, given a selected feature subset S with |S| features, to
determine whether a candidate feature is redundant, the time cost is
O(|S|2) if all selected features need to be compared to. This corre-
sponds to the worst case. Extremely, the candidate feature may be
redundant to the first gene of S, then the time complexity is O(|S|).

3.3. Incremental wrapper-based subset selection with Markov
blanket

Similar to SFS-MB, we integrate the Markov blanket technique with
incremental wrapper-based subset selection (IWSS-MB). Algorithm 5
shows the pseudo-code of IWSS-MB, which comprises two steps. In the
first step, all features are ranked in descending order of relevance
according to an evaluation metric (lines 1–4). In our study, we use
symmetric uncertainty to measure the relevance SU(fi, C) between each
feature f and the target class C. In the second step, a classifier runs over
the ranked feature set R sequentially to determine whether a candidate
feature should be added into the selected feature subset S (lines 7–17).
Specifically, we first evaluate the first ranked feature and include it into S
(lines 11–12), because IWSS ensures to select the first ranked feature in
R. Rather than directly measure the quality of the second feature using the
classifier, IWSS-MB then finds these candidate features whose Markov
blanket is the first feature and eliminates them from the candidate
features (lines 13–17). Then, IWSS-MB considers the next candidate
feature f. If f together with S improves the classification accuracy, IWSS-
MB selects f into S and removes the candidates whose Markov blanket is f;
otherwise, IWSS-MB considers next candidate feature. Repeat the above
process until the last feature in R is evaluated.

A. Wang et al. Computers in Biology and Medicine 81 (2017) 11–23

14



Algorithm 4. Wrapper-based Sequential Forward Selection with
Markov Blanket (SFS-MB).

Algorithm 5. Incremental Wrapper-based Subset Selection with
Markov Blanket (IWSS-MB).

4. Experiments and results

4.1. Experimental data

For the purpose of this study as we stated in the introduction
section, we conduct extensive experiments on the following ten publicly
available microarray datasets that have high-dimensionality and small
sample sizes. A brief summary to the ten datasets is presented in
Table 1. The last column SFR denotes the ratio between the number of
samples and the number of genes and shows a great imbalance between
them.

4.1.1. Colon data
Colon data consists of 62 samples, and each sample has 2000 genes.

Of these samples, 40 are labels as tumor, and the remaining 22 are

from normal tissues. The task on this dataset is to distinguish between
normal and tumor samples according to the gene expression profiles
[30].

4.1.2. Small Round Blue Cell Tumor (SRBCT) data
SRBCT has four different types of childhood tumors: Ewing’s family

of tumors (EWS), neuroblastoma (NB), non-Hodgkin Burkitt’s lym-
phoma (BL), and rhabdomyosarcoma (RMS). There are 83 samples in
SRBCT and each sample contains 2308 genes. Of these samples, 29 are
EWS samples, 18 are NB samples, 11 BL and 25 RMS samples. The
goal is to build a classifier to distinguish the four subtypes of tumors
[31].

4.1.3. Leukemia1 data
This dataset contains 72 samples that are collected from bone

marrow and peripheral blood in leukemia patients to distinguish
between acute lymphoma leukemia (ALL) and acute myeloid leukemia
(AML) tissues. Of these samples, 25 are AML samples, 47 are ALL
samples and there are 7129 genes in each sample [2]. The classification
task on Leukemia1 is to distinguish these two types of leukemia.

4.1.4. Leukemia2 data
A collection of leukemia patient samples from bone marrow and

peripheral blood is used for distinguishing between acute myeloid
leukemia (AML) and acute lymphoma leukemia (ALL) tissues. The data
for ALL samples are further divided into B-cell ALL and T-cell ALL.
Leukemia2 consists of 72 samples with 5327 genes: 25 AML samples,
38 ALL-B samples and 9 ALL-T samples [2]. The classification goal is
to classify the three subtypes of leukemia.

4.1.5. Diffuse Large-B-Cell Lymphoma (DLBCL) data
This dataset is a collection of B-cell lineage malignancy diffuse large

B-cell lymphomas (BCL) and follicular lymphomas (FL) samples.
DLBCL consists of 19 FL samples and 58 BCL samples. Each sample
is described by 7129 genes [32].

4.1.6. Prostate data
This dataset consists of 50 normal samples and 52 prostate tumors.

The number of genes is 12600 [33]. The task is to identify the gene
expression patterns that distinguish the tumor from normal.

4.1.7. Bladder data
This dataset is a collection of bladder carcinoma samples from three

different tumor stages. There are 10 samples in tumor stage T2-T4, 19
samples in stage Ta and 11 samples in stage T1. Each sample contains
5724 genes [34]. The task is to build a classifier to classify the bladder
tumor samples.

4.1.8. Gastric data
Gastric consists of tumor gastric samples and normal gastric

samples. There are 30 samples in total, and each sample is descried

Table 1
Experimental dataset description.

ID Dataset #Genes #Samples #Classes #SFR

1 Colon 2000 62 (40/22) 2 0.031
2 SRBCT 2308 83(29/25/11/18) 4 0.036
3 Leukemia1 7129 72 (47/25) 2 0.010
4 Leukemia2 5327 72(38/9/25) 3 0.014
5 DLBCL 7129 77 (58/19) 2 0.011
6 Prostate 12600 102(50/52) 2 0.008
7 Bladder 5724 40(10/19/11) 3 0.007
8 Gastric 4522 30(8/22) 2 0.007
9 Tox 5748 171(45/45/39/42) 4 0.030
10 Blastomi 1465 23(10/13) 2 0.016
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by 4522 genes. Of these samples, 8 samples are from the normal gastric
tissue and 22 samples are from the tumor gastric tissues [35]. The task
is to induce a classification model to distinguish the tumor gastric
samples from the normal.

4.1.9. Tox data
The number of genes in each sample is 5748. Tox includes four

different subtypes, each with 45, 45, 39, and 42 samples, respectively.
The classification task is to classify the four subtypes of Tox [36].

4.1.10. Blastomi data
it consists of 10 examples from the metastatic medulloblastoma and

13 examples from the non-metastatic medulloblastoma. Each sample is
described by 1465 genes. The task on this dataset is to build a
prediction model to distinguish metastatic medulloblastoma from
non-metastatic medulloblastoma [37].

4.2. Experimental setup

In wrapper-based feature selection, a classifier is required to be
used as the evaluation function to measure the goodness of candidate
features. In addition, to verify the effectiveness of wrapper methods in
feature selection, a classifier is also required to evaluate the quality of
the finally obtained feature subset. In our study, three commonly used
classifiers with different metrics are used, including k-nearest-neigh-
bor, naïve Bayes and C4.5 decision tree. Moreover, the same classifier
is not only integrated into the wrapper procedure to evaluate the
goodness of a candidate feature, but also used as the classifier to
evaluate the quality of finally obtained feature subset. For microarray
data characterized by high dimensionality and small sample sizes, to
evaluate the quality of the obtained features, a ten-fold cross-validation
is favorable for generating independent training set and test set [38],
and in this process, each one of the ten folds is retained as a test set to
evaluate the quality of the finally obtained features whereas the
remaining nine folds are used as the training set. In particular, feature
selection is performed only on the training set for an unbiased selection
protocol [39,40]. The classifier is then trained on the training set
projected over the selected features and evaluated on the test set
projected over the selected features. The final accuracy is the mean of
the ten classification results. Furthermore, for the easy calculation of
symmetric uncertainty in handling continuous variables, we first
normalize each gene with zero mean and one standard deviation, and
then discretize the continuous values into three disjointed partitions
with two thresholds −0.5 and 0.5 [41].

Because the goal of our experiments is to test the effectiveness of
integrating the Markov blanket technique into wrapper-based feature
selection, we focus our experiments on comparison between wrapper-
based feature selection with Markov blanket and methods without
Markov blanket. To demonstrate the effectiveness and efficiency of the
proposed approach, experiments are conducted in terms of the
accuracy, the size of finally obtained features, the number of wrapper
evaluations and the actual time costs. As for the effectiveness of
wrapper-based feature selection without Markov blanket, please refer
to prior work [22,23] for details on its performance in comparison with
other well-performing feature selectors (e.g. correlation-based feature
selection, fast correlation based filter, and FOCUS). We further use a
Wilcoxon signed-rank test with a significance interval of 95% to
determine whether there is any difference between wrapper-based
feature selection without and with Markov blanket in classification
accuracy and the size of obtained feature subset [42]. The difference is
significant if the p-value is less than 0.05. We implemented these
algorithms with Matlab and ran experiments on a Quad-core Intel CPU
(with a 3.2 GHz processor and 4 G RAM).

4.3. Experimental results of wrapper-based sequential forward
selection

In this section, we present the experimental results of wrapper-
based sequential forward selection (SFS) and wrapper-based sequential
forward selection with Markov blanket (SFS-MB), and consider both
the cases where mf ={2, 3}, marked as the superscript on each method.
Table 2 presents the experimental results for 1-nearest-neighbor
(1NN), naïve Bayes (NB) and C4.5, respectively. For each dataset, the
average of the ten-fold classification accuracy, and the average of the
size of the ten selected features subsets are given. The best accuracy
achieved on each microarray dataset is shown in bold. The last row
“Test” shows the results of the Wilcoxon signed-rank test with a
confidence level of α=0.05 between SFS and SFS-MB. A notation “*”
in the tables represents that SFS-MB achieves better accuracy or a
smaller subset of features in comparison with the one without Markov
blanket, “^” represents that SFS-MB obtains worse accuracy or a
greater subset of features, and “=” means that there is no statistical
difference between SFS and SFS-MB.

For 1NN, regarding accuracy, we can observe that SFS-MB achieves
79.9% classification accuracy averaged over the ten datasets, which is
comparable to 75.3% obtained by SFS in the case of mf =2. When mf
=3, SFS-MB achieves 78.7% average classification accuracy and SFS
achieves 77.1% classification accuracy. In both cases, there is no
statistically significant difference between SFS and SFS-MB.
Regarding the size of finally obtained feature subset, the average size

Table 2
Experimental results of SFS and SFS-MB in accuracy and the size of selected genes.

ID SFS2 SFS2-MB SFS3 SFS3-MB

acc gene acc gene acc gene acc gene

1 72.6 4.0 77.4 3.3 76.0 3.1 76.7 3.2
2 86.8 6.6 78.5 6.4 89.4 5.7 86.2 6.2
3 87.2 2.0 84.3 2.0 88.6 2.1 89.9 2.2
4 83.0 3.4 92.1 3.6 84.9 4.1 82.0 3.6
5 80.9 3.8 87.3 4.0 79.4 3.3 84.6 3.1
6 79.5 3.4 80.4 3.6 80.4 4.7 77.5 4.0
7 57.5 3.0 73.3 3.0 69.7 2.9 74.0 2.7
8 97.5 1.0 100.0 1.0 96.7 1.0 96.7 1.0
9 55.9 7.2 58.9 8.0 59.2 6.9 64.7 7.4
10 51.7 2.2 66.7 1.5 46.7 1.8 55.0 1.3
Test = = = =

1NN
1 79.0 5.3 77.6 3.8 77.4 4.3 82.4 3.7
2 82.7 5.7 87.6 6.1 84.0 6.8 79.8 5.4
3 91.4 2.8 91.5 2.8 83.8 2.8 88.9 2.8
4 95.5 3.5 94.3 3.6 90.2 3.5 86.1 3.5
5 87.0 3.8 85.4 4.1 87.5 4.2 78.7 3.6
6 81.5 5.1 84.5 4.4 81.3 4.7 88.5 4.2
7 70.0 3.1 78.5 3.2 64.3 3.6 74.2 3.5
8 93.3 1.0 100.0 1.0 88.3 1.0 90.0 1.0
9 66.2 7.7 68.0 8.3 68.0 8.8 68.7 9.1
10 58.3 2.4 66.7 2.4 68.3 3.0 68.3 3.1
Test = = = =

NB
1 79.0 3.6 76.0 3.8 74.5 4.7 77.4 2.8
2 85.9 4.7 83.1 4.5 85.1 4.9 84.7 4.8
3 81.7 2.6 78.6 2.2 83.9 2.5 84.3 2.8
4 86.1 3.4 76.5 3.3 77.7 3.4 87.7 3.6
5 81.8 3.3 80.7 3.5 77.5 2.9 84.8 3.2
6 88.4 4.1 86.5 4.3 78.6 4.1 85.3 3.9
7 72.0 3.4 71.3 2.8 69.7 3.4 76.8 3.2
8 97.5 1.0 100.0 1.0 97.5 1.0 100.0 1.0
9 52.4 4.8 59.1 4.6 51.6 5.0 52.6 5.5
10 56.7 2.3 63.3 2.2 41.7 1.8 55.0 2.4
Test = = * =

C4.5
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selected by SFS-MB is 3.6 for mf =2 and 3.5 for mf =3, while SFS
selects 3.7 features for mf =2 and 3.6 features for mf =3. In both cases,
there is no significant difference between SFS and SFS-MB. Further, we
can observe that SFS with Markov blanket outperforms SFS on nine out
of the ten experimental datasets, except for the SRBCT dataset. On
SRBCT, the best accuracy achieved by SFS is 89.4%, which is compar-
able to 86.2% of SFS-MB. In this case, SFS-MB with mf =2 tend to be a
good choice. Similar conclusions can be drawn for NB and C4.5.
Specifically, for NB, SFS2 achieves 80.5% average accuracy, and SFS2-
MB achieves 83.4% average accuracy. Whenmf =3, SFS achieves 79.3%
average accuracy and SFS-MB 80.6% average accuracy. The Wilcoxon
signed-rank test shows that there is no significant difference between
them. In this case, SFS with Markov blanket performs better than SFS
on eight out of the ten experimental datasets, where SFS2-MB achieves
the best accuracy three times and SFS3-MB obtains the best accuracy
on four datasets. SFS3-MB coupled with NB seems to a good combina-
tion. For C4.5 as shown, we can see that there is no significant
difference between SFS and SFS-MB in the size of the final obtained
feature subset. Notably, SFS2-MB achieves comparable classification
accuracy to SFS2, and SFS3-MB achieves better accuracy than SFS3

with a p-value of the Wilcoxon signed-rank test less than 0.05. In this
situation, SFS without Markov blanket obtains the best accuracy on
three datasets, while SFS with Markov blanket outperforms SFS on
seven datasets. Typically, SFS3-MB achieves the best accuracy on five
out of the seven datasets. Overall, the experimental results presented in
Table 2 indicate that the proposed SFS with Markov blanket obtains
comparable accuracy to or better accuracy than SFS without Markov
blanket.

In the previous section, it is concluded that SFS-MB achieves
comparable performance to SFS in terms of the classification accuracy
and the size of finally obtained feature subset. In this section, we
investigate the number of wrapper evaluations carried out in each
approach. Table 3 presents experimental results using 1NN, NB and
C4.5, respectively. The last row “Ratio” is the ratio between the average
number of wrapper evaluations of SFS and the average number of
wrapper evaluations of SFS-MB. According to results in Table 3, we can
observe that compared to the situation without Markov blanket, SFS-
MB greatly reduces the number of wrapper evaluations conducted in
feature selection on each dataset. For instance, when using 1NN, formf
=2, the average number of wrapper evaluations of SFS is 24362.0,
whereas the average number of wrapper evaluations of SFS-MB is
10922.0. For mf =3, SFS-MB reduces the average number of wrapper
evaluations from 25437.0 to 10819.0. For NB, the ratio between SFS2

(SFS3) and SFS2-MB (SFS3-MB) is 2.6 (2.6), and for C4.5, the ratio
between SFS and SFS-MB is 2.3.

Besides presenting the number of wrapper evaluations, to verify the
performance gain of SFS with Markov blanket in time cost, we present
the ratio between the time costs of SFS and time costs of SFS-MB for
each dataset in Fig. 1. For each dataset, we present the time costs
associated with 1NN, NB, and C4.5, respectively. The X-axis indicates
different classifiers, and Y-axis, named “Speedup”, represents the
speedup ratio. A value of “Speedup” larger than one means that SFS
with Markov blanket achieves better time performance compared with
SFS without Markov blanket. From Fig. 1, we observe that SFS with
Markov blanket accelerates the feature selection process impressively
compared to the one without Markov blanket. For 1NN, for instance,
on Colon, SFS2 costs 667.6 s, while SFS2-MB costs 195.1 s, and SFS3

costs 547.4 s, while SFS3-MB costs 210.4 s. On Prostate, SFS2 costs
3880.0 s and SFS3 costs 5037.1 s, while SFS2-MB only costs 1234.1 s
and SFS3-MB costs 1250.9 s. For NB, typically on Prostate, SFS2 costs
6074.4 s and SFS3 costs 5662.1 s, while SFS2-MB costs 1389.0 s and
SFS3-MB costs 1487.6 s. For C4.5, on Prostate, SFS2-MB (SFS3-MB)
costs 12043.0 (11663.0) seconds compared to 42367.0 (42349.0)
seconds of SFS2 (SFS3).

4.4. Experimental results of incremental wrapper-based subset
selection

In this section, we present the experimental results of incremental
wrapper-based feature subset selection without (IWSS) and with
Markov blanket (IWSS-MB), and consider both the cases where mf
={2, 3}.

Table 4 presents the results for 1NN, NB and C4.5. For each
dataset, the average of the ten-fold classification accuracy, and the
average of the size of the ten selected features are given. The best
accuracy achieved on each microarray dataset is shown in bold. The last
row “Test” shows the results of the Wilcoxon signed-rank test with a
confidence level of α=0.05 between the approach with and without
Markov blanket. A notation “*” in the tables represents that Markov
blanket embedded method achieves better accuracy or a smaller subset
of features in comparison with the method without Markov blanket, “^”
represents that Markov blanket embedded method obtains worse
accuracy or a greater subset of features, and “=” means that there is
no statistical difference between the two approaches.

As shown in Table 4 for 1NN, regarding accuracy, we can observe
that IWSS-MB achieves 86.2% classification accuracy averaged over the
ten datasets, which is comparable to 82.8% obtained by IWSS in the
case of mf =2, and that IWSS3-MB achieves 83.7% average classifica-
tion accuracy and IWSS3 achieves 82.7% average accuracy. In both
cases, there is no significant difference between IWSS and IWSS-MB
with a confidence level of α=0.05. Regarding the size of finally obtained

Table 3
Number of required wrapper evaluations for SFS and SFS-MB.

ID SFS2 SFS2-MB SFS3 SFS3-MB

1 9989.2 2876.8 8193.2 3097.3
2 15462.0 9099.0 13634.0 8931.7
3 21384.0 11433.0 22097.0 11619.0
4 23431.0 13155.0 27157.0 13146.0
5 34210.0 12340.0 30647.0 11660.0
6 55432.0 17402.0 71806.0 17633.0
7 22890.0 12551.0 22318.0 12010.0
8 9043.0 6404.4 9043.0 6402.8
9 47095.0 21938.0 45379.0 21717.0
10 4684.3 2016.0 4099.2 1968.7
Ratio 2.2 2.4

1NN
1 12581.0 2987.3 10588.0 3144.7
2 13635.0 8832.1 15869.0 8260.6
3 27085.0 12298.0 27085.0 12390.0
4 23964.0 13040.0 23963.0 12954.0
5 34210.0 11742.0 37059.0 11473.0
6 76844.0 17479.0 71806.0 18049.0
7 23462.0 13345.0 26322.0 13409.0
8 9043.0 6258.3 9043.0 6287.9
9 49973.0 22948.0 56285.9 23514.4
10 4976.8 2117.6 5853.7 2289.1
Ratio 2.5 2.5

NB
1 9191.3 2987.4 11386.0 2738.9
2 11603.0 7676.1 12009.0 7691.7
3 25660.0 11525.0 24947.0 12938.0
4 23431.0 12949.0 23431.0 13357.0
5 30648.0 12425.0 27797.0 11645.0
6 64249.0 17433.0 64249.0 16850.0
7 25178.0 13297.0 25178.0 14353.0
8 9043.0 6410.9 9043.0 6409.0
9 33324.0 17145.0 34470.0 18769.0
10 4830.6 2146.7 4099.4 2269.0
Ratio 2.3 2.2
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feature subset, the average size obtained by IWSS-MB is 8.1 in the case
of mf =2, which is much smaller than 10.2 of IWSS. In the case of mf
=3, IWSS-MB selects 6.7 features and IWSS selects 8.0 features.
Further, we can observe that IWSS with Markov blanket outperforms
IWSS on six out of the ten experimental datasets. On the other four
datasets, the classification accuracy obtained by IWSS-MB is compar-
able to that of IWSS. In this case, IWSS-MB with mf =2 tend to be a
good choice. For NB, IWSS-MB achieves comparable classification
accuracy to IWSS, and when mf =2, IWSS-MB selects 7.6 features,
which is much smaller than 9.3 features of IWSS. In this case, IWSS
with Markov blanket performs better than IWSS on nine out of the ten
experimental datasets, where IWSS2-MB achieves the best accuracy on
six datasets and IWSS3-MB obtains the best accuracy on three datasets.
So, IWSS2-MB coupled with NB seems to a good combination. Also, for
C4.5, we observe that there is no significant difference in classification
accuracy between IWSS-MB and IWSS, however, IWSS-MB selects a
smaller subset of features in comparison with IWSS for both mf =2 and
mf =3. In this situation, IWSS without Markov blanket obtains the best
accuracy on three datasets, while IWSS with Markov blanket outper-
forms IWSS on seven datasets. Typically, IWSS3-MB achieves the best
accuracy on five out of the seven datasets. When using C4.5 classifier,
we would like to use IWSS with Markov blanket with mf =3. Overall,
experimental results in Table 4 indicate that the proposed incremental
wrapper based subset selection with Markov blanket achieves compar-
able accuracy to IWSS.

Next, we investigate the number of wrapper evaluations required in
IWSS and IWSS-MB, respectively. The last row “Ratio” is the ratio
between the average number of wrapper evaluations of IWSS and the
average number of wrapper evaluations of IWSS-MB. Table 5 presents
the number of wrapper evaluations when using 1NN, NB and C4.5.
According to results in Table 5, we can observe that IWSS-MB greatly
reduces the number of required wrapper evaluations in comparison
with IWSS on all the datasets for each classifier. For instance, the
average number of wrapper evaluations of IWSS2 (IWSS3) is 5395.2
(5395.2), whereas the average number of wrapper evaluations of
IWSS2-MB (IWSS3-MB) is 479.6 (475.0) when using 1NN; the ration
between the average number of wrapper evaluations of IWSS2 (IWSS3)
and that of IWSS2-MB (IWSS3-MB) is 12.6 (11.8) when using NB; the
average number of wrapper evaluations of IWSS2 (IWSS3) is 11.1
(10.0) times more than that of IWSS2-MB (IWSS3-MB) in the case of
C4.5.

We then conduct experiments to show the performance gain in time
cost and present the ratio between the time costs of IWSS and time
costs of IWSS-MB for each dataset in Fig. 2. For each dataset, we
present the time costs associated with 1NN, NB, and C4.5, respectively.
The X-axis indicates different classifiers, and Y-axis, named “Speedup”,
represents the speedup ratio. A value of “Speedup” larger than one
means that IWSS with Markov blanket achieves better time perfor-
mance compared with IWSS without Markov blanket. From Fig. 2, we
observe that IWSS with Markov blanket accelerates the feature

Fig. 1. Running time comparison(s) for SFS and SFS-MB.
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selection process impressively compared to the one without Markov
blanket.

Overall, according to the experimental results and analysis from
both the wrapper-based feature with sequential forward selection and
the incremental wrapper-based feature selection methods, we conclude
that in comparison with wrapper methods without Markov blanket,
Markov blanket embedded methods obtain comparable classification
accuracy, substantially reduce the number of wrapper evaluations, and
speed up the feature selection process impressively for both the binary
and multiclass classification. This demonstrates the effectiveness and
efficiency of our proposed approach.

4.5. Experimental results of feature subset consistency

In this section, to measure the degree of consistency of two feature
subsets selected by two different feature selection methods, we present
the experimental results of wrapper-based feature selection methods
with and without Markov blanket. Table 6 shows the results of SFS vs.
SFS-MB, and IWSS vs. IWSS-MB for both the cases where mf ={2, 3}.
The experimental results are obtained by running the feature selector
over the training set. Each entry in Table 6 represents the number of
features selected without using Markov blanket, the number of features
selected with Markov blanket, and the number of common features
selected by two feature selectors. For instance, the entry “8/3/1″ of
IWSS3 and IWSS3-MB for 1NN indicates that IWSS3 selects 8 features,
IWSS3-MB selects 3 features, and there is one common feature

between them.
According to the experimental results in Table 6, we observe that

wrapper-based feature selector with Markov blanket selects a smaller
number of features in comparison with the case without Markov
blanket.

This indirectly demonstrates the efficiency of the proposed method
in selecting discriminant features. In addition, we can observe that few
common features are selected by two feature selectors, and there is
even no common feature selected. For instance, for the case of SFS2 vs.
SFS2-MB of 1NN, the entry is “5/3/0″; for the case of IWSS2 vs.
IWSS2-MB, the entry is “14/5/2″. This indicates that there exist
different subsets of genes achieving similar or equal cancer-predictive
classification performance, which can help researchers obtain several
diverse subsets of genes associated with a specific cancer and look
deeper into the disease mechanism in a comprehensive way.
Specifically, we then take a further step to investigate the gene function
of different gene sets obtained by different feature selection methods.
Without loss of generality, we take medulloblastoma microarray data as
an example. For the case of NB, the subset of genes selected by SFS2

includes {ACTB, WT1-AS, IL10}, and SFS2-MB selects {IL10, SMAD5,
ACTB, EIF4A1}; {GSTO1, THRA, N4BP2L1, HTRA1} and {YWHAE,
CSHL1, MT3} are the subsets of genes obtained by SFS3 and SFS3-MB,
respectively. For IWSS and IWSS-MB, IWSS2 selects {GAPDH, CXCR5,
VIP, FGFR1, TPBG} in comparison to {GAPDH, RAB2A, ACTB,
XRCC5} of IWSS2-MB. For mf =3, IWSS3 selects {GAPDH, CXCR5,
BLM, VAT1, NTRK1}, and IWSS3-MB obtains {GAPDH, TXK, GSTP1,
DDR1, IGFBP2}. We then list the gene function of the two gene subsets
obtained by IWSS3 and IWSS3-MB using NB, respectively (shown in

Table 4
Experimental results of IWSS and IWSS-MB in accuracy and the size of selected genes.

ID IWSS2 IWSS2-MB IWSS3 IWSS3-MB

acc gene acc gene acc gene acc gene

1 76.0 13.5 71.0 5.4 80.2 10.0 78.8 4.4
2 92.6 11.8 93.8 11.8 96.5 12.7 95.0 11.4
3 96.1 8.3 95.7 7.3 92.0 6.6 90.5 7.7
4 96.9 4.3 95.7 4.1 98.6 5.2 95.2 5.5
5 85.9 12.4 93.4 9.1 92.0 9.9 91.1 9.7
6 88.3 12.0 90.4 9.0 85.5 11.2 88.2 6.5
7 65.2 8.8 81.7 7.3 74.7 7.7 81.0 7.2
8 96.7 1.1 100.0 1.3 100.0 1.1 100.0 1.1
9 68.7 24.8 77.0 22.0 69.0 23.7 69.2 18.9
10 61.7 4.7 63.3 3.7 38.3 4.6 48.3 3.7
Test = * = =

1NN
1 85.7 11.1 79.0 5.3 81.0 10.4 83.6 4.2
2 88.0 12.5 94.0 11.8 92.8 10.8 91.5 11.4
3 94.0 7.5 94.6 7.1 93.8 6.7 94.8 6.7
4 95.9 6.6 96.3 6.2 95.7 6.1 95.5 6.3
5 89.8 15.4 89.3 10.3 88.6 13.5 90.0 10.6
6 91.2 13.5 94.0 8.2 92.3 11.3 92.3 7.1
7 79.7 9.8 81.3 7.8 77.5 8.6 79.0 7.0
8 94.2 1.3 100.0 1.5 96.7 1.3 96.7 1.4
9 68.5 31.3 72.2 23.8 69.1 24.4 69.5 19.2
10 35.0 7.0 55.0 5.4 60.0 6.4 66.7 4.2
Test = * = =

NB
1 72.6 8.3 77.4 4.2 81.9 8.4 81.0 3.5
2 86.4 11.3 84.5 9.0 78.5 11.1 86.8 8.7
3 89.9 6.9 90.5 5.9 91.5 6.2 92.0 5.6
4 90.3 6.7 92.6 7.1 94.0 7.6 87.1 6.0
5 80.4 11.6 87.0 7.9 85.5 10.3 87.5 6.7
6 88.2 11.0 86.5 5.7 83.4 10.5 85.5 5.4
7 70.7 10.0 74.7 8.4 74.7 8.3 74.0 7.5
8 100.0 1.2 100.0 1.1 100.0 1.0 100.0 1.0
9 56.3 15.3 58.9 13.2 56.7 13.9 58.5 12.3
10 48.3 4.8 55.0 4.2 55.0 4.1 56.7 3.1
Test * * = *

C4.5

Table 5
Number of required wrapper evaluations for IWSS and IWSS-MB.

ID IWSS2 IWSS2-MB IWSS3 IWSS3-MB

1 2000.0 15.2 2000.0 29.5
2 2308.0 481.4 2308.0 517.1
3 7129.0 290.1 7129.0 305.3
4 5327.0 1166.6 5327.0 909.1
5 7129.0 201.3 7129.0 197.4
6 12600.0 78.5 12600.0 104.0
7 5724.0 765.1 5724.0 750.5
8 4522.0 1340.4 4522.0 1345.9
9 5748.0 382.2 5748.0 491.6
10 1465.0 75.4 1465.0 99.7
Ratio 11.2 11.4

1NN
1 2000.0 18.5 2000.0 28.8
2 2308.0 463.1 2308.0 510.2
3 7129.0 320.5 7129.0 338.9
4 5327.0 818.3 5327.0 805.4
5 7129.0 188.3 7129.0 164.9
6 12600.0 87.1 12600.0 104.2
7 5724.0 597.1 5724.0 681.1
8 4522.0 1209.8 4522.0 1332.5
9 5748.0 384.4 5748.0 463.0
10 1465.0 49.9 1465.0 75.7
Ratio 13.0 12.0

NB
1 2000.0 28.1 2000.0 31.0
2 2308.0 614.1 2308.0 675.4
3 7129.0 442.1 7129.0 422.6
4 5327.0 768.8 5327.0 894.6
5 7129.0 244.8 7129.0 344.4
6 12600.0 129.9 12600.0 154.8
7 5724.0 618.7 5724.0 659.5
8 4522.0 1361.1 4522.0 1512.5
9 5748.0 676.1 5748.0 710.0
10 1465.0 85.7 1465.0 101.8
Ratio 10.9 9.8

C4.5
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Table 7). We can observe that both the two gene subsets play an
important role in the biological process, though the two gene subsets
only share one common gene.

5. Time and space complexity analysis

The above section shows the superiority of our proposed method in
reducing the time cost and achieving high classification accuracy for
both the binary and multi-class problems. In this section, we analyze
the theoretical space and time complexity of the two types of feature
selectors: the case of sequential forward selection and the case of
incremental wrapper subset selection. For the space complexity
analysis, we need to load the training set into memory and store the
trained classifier for prediction purpose. In particular, for a training set
with m samples and n features, if using the Markov blanket technique,
we need to store the relevance values between each feature with the
class label (O(n) space complexity), and store the redundancy values
between each pair of features (O(n2) space complexity). Therefore, in
comparison with the case without using Markov blanket, we have an
extra space complexity of O(n2+n) in the RAM memory, which is easily
affordable in current practices.

For the time complexity analysis, the time complexity of wrapper-
based feature selector is mainly determined by the number of required
wrapper evaluations and the complexity of the classifier used to

evaluate the goodness of a candidate feature subset S. The complexity
of a classifier is mainly determined by the training set size m and the
size s of S, that is, it is a function of m and s, and we note it as g(m, s).
Because m is a constant in feature selection, we simplify it as O(g(s)).
Both average and worst time complexity are analyzed.

5.1. Sequential forward selection case

5.1.1. Without using Markov blanket
SFS needs to conduct wrapper evaluations n times in selecting the

first feature, and the classifier complexity is O(g(1)); in selecting the
second feature, it conducts wrapper evaluations (n-1) times, and the
classifier complexity of O(g(2)). Suppose s features are finally selected,
in the last run, SFS conducts (n-s) times wrapper evaluations with a
classifier complexity of O(g(s+1)). Thus, we obtain the overall time
complexity:
n g n g n s O g s n i g i*O( (1))+ ( −1)*O( (2))+…+( − )* ( ( +1))= ∑ ( − )O( ( + 1))i

s
=0 . If

all of the features are selected, the time complexity is
n i g i∑ ( − )O( ( + 1))i

n
=0 . The best case is that only one feature is

selected, i.e., s=1.

5.1.2. Using Markov blanket
Because the number of removed redundant features in each

iteration is a dynamic number, we analyze the time complexity of

Fig. 2. Running time comparison(s) for IWSS and IWSS-MB.
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SFS-MB with the following situations. a) If there exists no redundancy
among features, SFS-MB then does not eliminate features, and its time
complexity is comparable to that of SFS. b) The first selected feature is
the Markov blanket of all the left features, these features are then to be
removed after selecting the first feature. The time complexity is

n gO( * (1)). c) Only one feature is removed. Typically, we can assume
that the elimination occurs in the process of finding the first feature.
Then, SFS-MB conducts n times wrapper evaluations in selecting the
first feature with the classifier complexity O(g(1)); in obtaining the
second feature, it conducts (n-2), rather than (n-1), times wrapper
evaluations, and the classifier complexity of O(g(2)). Suppose s features
are finally selected, in the last run, SFS-MB conducts (n-s-1), rather
than (n-s), times wrapper evaluations with a classifier complexity of
O(g(s+1)). Thus, the overall time complexity is
n g n g n s O g s*O( (1))+ ( −2)*O( (2))+…+( − − 1)* ( ( +1)), which is less
than that of SFS. d) More than one features are removed. According
to the analysis of case c), we can obtain a lower time complexity.

5.2. Incremental wrapper subset selection case

5.2.1. Without using Markov blanket
IWSS conducts once wrapper evaluation in selecting the first

feature, and the classifier complexity is O(g(1)); in selecting the second
feature, and the classifier complexity of O(g(2)). In evaluating the last
feature, the classifier complexity of IWSS is O(g(n)). Thus, the overall
time complexity is: g g g n g iO( (1))+O( (2))+…+O( ( ))= ∑ O( ( ))i

n
=1 .

5.2.2. Using Markov blanket
Similar to SFS, we analyze the time complexity of IWSS-MB in the

following four situations. a) If there exists no redundancy among
features, IWSS-MB then does not eliminate features, and has a time
complexity comparable to that of IWSS. b) The first selected feature is
the Markov blanket of all the left features, these features are then to be
removed after the first feature is selected. The time complexity is

gO( (1)). c) Only one feature is removed. Typically, we can assume that
the elimination occurs in the process of evaluating the first feature.
Then, IWSS-MB has a classifier complexity O(g(1)) in selecting the first

Table 6
Feature subset consistency comparison.

ID SFS2 vs. SFS2-
MB

SFS3VS. SFS3-
MB

IWSS2 vs. IWSS2-
MB

IWSS3 vs. IWSS3-
MB

1 5/3/0 5/2/0 14/5/2 8/3/1
2 6/6/0 6/7/0 10/11/5 15/9/5
3 2/2/1 3/2/0 10/7/3 7/8/1
4 4/6/0 4/4/0 4/4/3 3/4/3
5 3/3/0 3/3/1 11/10/5 11/6/3
6 4/4/0 6/5/0 13/8/3 10/8/4
7 3/5/1 3/3/1 9/9/2 5/4/4
8 1/1/1 1/1/1 1/1/1 1/1/1
9 6/14/0 18/11/1 32/18/3 29/22/3
10 1/1/0 1/1/0 3/6/1 3/3/2

1NN
1 5/2/1 4/2/2 10/4/2 16/4/1
2 6/6/1 9/7/1 11/15/3 11/15/6
3 2/3/1 3/3/0 8/7/5 8/6/3
4 3/3/2 4/4/1 8/4/3 7/6/3
5 6/3/0 5/5/0 13/13/2 13/13/2
6 6/7/1 6/4/0 11/10/2 14/6/2
7 3/4/1 4/3/0 11/10/4 10/8/4
8 1/1/1 1/1/0 1/2/1 1/1/1
9 7/12/0 4/14/1 32/25/4 16/18/3
10 3/4/2 4/3/0 5/4/1 5/5/1

NB
1 1/4/0 4/4/1 11/4/1 11/3/1
2 4/4/1 5/5/0 17/8/4 12/6/3
3 2/3/1 3/3/0 8/7/5 8/6/3
4 3/3/0 3/3/1 10/4/3 10/7/3
5 3/3/1 3/3/0 15/7/3 9/10/2
6 5/4/0 6/4/2 13/5/2 8/5/2
7 3/4/1 4/3/0 11/10/4 10/8/4
8 1/1/1 1/1/1 1/1/1 1/1/1
9 5/3/1 5/3/1 12/16/1 12/14/2
10 1/2/0 3/2/0 7/5/2 7/4/3

C4.5

Table 7
Selected gene and its function.

Gene Gene function

GAPDH It encodes a member of the glyceraldehyde-3-phosphate dehydrogenase protein family. Its product catalyzes an important energy-yielding step in carbohydrate
metabolism, the reversible oxidative phosphorylation of glyceraldehyde-3-phosphate. Alternative splicing results in multiple transcript variants

CXCR5 It encodes a multi-pass membrane protein that belongs to the CXC chemokine receptor family. It is expressed in mature B-cells and Burkitt's lymphoma. Alternatively
spliced transcript variants encode different isoforms

BLM Its product is related to the RecQ subset of DExH box-containing DNA helicases and has both DNA-stimulated ATPase and ATP-dependent DNA helicase activities.
Mutations causing Bloom syndrome delete or alter helicase motifs and may disable the 3′−5′ helicase activity

VAT1 Synaptic vesicles are responsible for regulating the storage and release of neurotransmitters in the nerve terminal. The encoded protein is an abundant integral
membrane protein of cholinergic synaptic vesicles and is thought to be involved in vesicular transport

NTRK1 It encodes a member of the neurotrophic tyrosine kinase receptor (NTKR) family. Mutations in this gene have been associated with congenital insensitivity to pain,
anhidrosis, self-mutilating behavior, mental retardation and cancer

IWSS3

GAPDH It encodes a member of the glyceraldehyde-3-phosphate dehydrogenase protein family. Its product catalyzes an important energy-yielding step in carbohydrate
metabolism, the reversible oxidative phosphorylation of glyceraldehyde-3-phosphate. Alternative splicing results in multiple transcript variants

TXK It plays an overlapping role with ITK in iNKT cell development and function. ITK has a unique function in the survival of iNKT cells. ITK plus RLK inhibition may
have therapeutic potential in Th1-mediated inflammatory diseases

GSTP1 Glutathione S-transferases are a family of enzymes for detoxification by catalyzing the conjugation of many hydrophobic and electrophilic compounds with reduced
glutathione. Functionally different GSTP1 variant proteins that are thought to function in xenobiotic metabolism and play a role in susceptibility to cancer, and other
diseases

WDDR1 Its encoded protein belongs to a subfamily of tyrosine kinase receptors with homology to Dictyostelium discoideum protein. Expression of this protein is restricted to
epithelial cells, particularly in the lung, gastrointestinal tract, and brain. Alternatively spliced transcript variants encoding different isoforms have been described for
this gene

IGFBP2 The protein encoded by this gene is one of six similar proteins that bind insulin-like growth factors I and II. The encoded protein can be secreted into the bloodstream
or it can remain intracellular, interacting with many different ligands. Several transcript variants have been found for this gene

IWSS3-MB
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feature; in evaluating the second feature, the classifier complexity is
O(g(2)). In evaluating the last feature, IWSS-MB has a classifier
complexity of O(g(n-1)), rather than g nO( ( )). Thus, the overall time
complexity is g g g n g iO( (1))+O( (2))+…+O( ( − 1))= ∑ O( ( ))i

n
=1
−1 , which

is smaller than that of IWSS. d) More than one features are removed.
According to the analysis of case c), we can obtain a lower time
complexity.

Overall, from the above analysis, we can see that both SFS-MB and
IWSS-MB can reduce the time complexity provided that there exists
redundancy among the features, which is an inherent characteristic of
microarray data [7,41]. We can also observe that a larger number of
redundant features in the original feature space accompanies a greater
reduction in time cost.

6. Conclusions

In this study, we proposed to integrate the Markov blanket
technique into wrapper-based feature selection. Rather than evaluate
all the candidate features using a classifier, the proposed method
eliminates those features that are redundant to the selected features
from the candidates. This helps reduce the number of candidate
features and wrapper evaluations, and thus speed up the feature
selection process. Extensive experimental comparisons between the
cases without and with Markov blanket were conducted on ten
microarray data with k-nearest-neighbor, naïve Bayes and C4.5.
Experimental results show that Markov blanket-embedded methods
greatly reduce the number of wrapper evaluations and the actual time
costs without degrading the classification performance, and that the
proposed method can generate a different feature subset to facilitate
biomedical research. In addition, theoretical time and space complexity
analysis also provide supports to our conclusions.

For the future research, we plan to work in the following four lines.
First, Markov blanket criterion is one of the metrics that we can use to
identity redundant features. So, our proposed method can be general-
ized to be a feature selection framework that can explicitly identify
redundant features, and thus we can apply other filter methods rather
than Markov blanket in our proposed methods. Second, although we
tested the effectiveness and efficiency of the proposed methods merely
on microarray data, they are general feature selectors that can be
applied to other high throughput genomic data types (such as RNA-seq,
ChIP-seq, and proteomics [43]) and even other fields (such as image
classification and text categorization). Therefore, one of the future
works involves testing the proposed approach in these alternate fields,
and a slight modification of the relevance criteria of these algorithms
may be required depending on the available samples. An alternative is
to use a t-test to evaluate the goodness of a candidate feature [22].
Third, the proposed method is actually a hybrid feature selection
strategy. We then plan to explore the integration of Markov blanket
with other well-performing wrapper-based feature selectors, including
the best incremental ranked subset (BIRS) [22], linear forward
selection (LFS) [44], and best agglomerative ranked subset (BARS)
[45], and test their effectiveness and efficiency. Fourth, our current
approach eliminates these redundant features whose Markov blanket is
the newly selected feature, and may ignore the interaction between the
candidates feature with a subset of features. This motivates us to
conduct further research to identify redundant features during the
wrapper evaluations based on a subset of selected features rather than
only according to the newly selected one.
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